Skip to main content

Genetic Engineering in Safflower (Carthamus tinctorius L.): Retrospect and Prospect

  • Chapter
  • First Online:
Genetically Modified Crops

Abstract

Safflower (Carthamus tinctorius L., Asteraceae) is an important edible oilseed crop. Because of the distinct seed oil profile, high α-tocopherol content, utilization as a leafy vegetable and useful petal pigments, it has special value among oilseed crops and is of much scientific interest. Recently, safflower has been improved for agronomical, nutritional and other traits with the introduction of specific genes from safflower and also other sources. The prerequisite for successful transformation is development of an in vitro propagation protocol, transformation method and gene of interest. Variation exists in regeneration frequency via organogenesis or somatic embryogenesis in different genotypes of safflower. Therefore, standardization of regeneration protocol is necessary for each genotype before gene transformation. Among different explants, cotyledons and apical shoot tips were found suitable for transformation and shoot regeneration. Agrobacterium-mediated transformation is the successful method for gene transfers in safflower. So far using this method, transformation has been achieved for the enhancement of γ-linolenic acid (GLA), α-linolenic acid (ALA), oleic acid, bioactive peptide, bioactive flavonoid and resistance to fungal pathogen Alternaria carthami. The commercial cultivation of genetically modified (GM) safflower is in progress in Australia, Canada and the USA. However, there is scope for improving the frequency of plant regeneration and genetic transformation. The present chapter describes the recent developments in genetic transformation and improvement of safflower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akihisa T, Oinnma H, Tamura T (1994) Erythro-hentriacontane-6.8-dilo and 11 other alkane 6,8-dilos from Carthamus tinctorius L. Phytochemistry 36:105–108

    Article  CAS  Google Scholar 

  • Anjani K, Yadav P (2017) High yielding-high oleic non-genetically modified Indian safflower cultivars. Ind Crop Prod 104:7–12

    Article  CAS  Google Scholar 

  • Anonymous (1950) Carthamus tinctorius L. In: Wealth of India, Indian raw materials, vol 2. CSIR, Indian, Bhopal, pp 83–88

    Google Scholar 

  • Anonymous (2019) The biology of Carthamus tinctorius L. (safflower) for information on the Australian Government Office of the Gene Technology Regulator Version 1.2, pp 14–15

    Google Scholar 

  • Badri J, Ansari NA, Mulpuri S (2009) Plan regeneration and microprojectile-mediated transient β-glucuronidase (gus) gene expression in mature embryos of Safflower (Carthamus tinctorius L.). Asian Austr J Plant Sci Biotech 3(1):31–36

    Google Scholar 

  • Baker CM, Dyer WE (1996a) Genetic transformation of Carthamus tinctorius L. (safflower). In: Bajaj YPS (ed) Plant protoplasts and genetic engineering. Biotechnology in agriculture and forestry. Springer Nature, Berlin, pp 201–210

    Google Scholar 

  • Baker CM, Dyer WE (1996b) Improvements in rooting regenerated safflower (Carthamus tinctorius L.) shoots. Plant Cell Rep 16:106–110

    Google Scholar 

  • Basalma D, Uranbey S, Mirici S, Kolsarici O (2008) TDZ×IBA induced shoot regeneration from cotyledonary leaves and in vitro multiplication in safflower. African J Biotech 7(8):960–966

    Google Scholar 

  • Baum A (2008) Sem Bio Sys Genetics Inc. submits IND for Safflower-produced insulin to U.S.FDA. http://www.isaaa.org/kc/cropbiotechupdate/article/default.asp?ID=2905

  • Belide S, Hac L, Singh SP, Green AG, Wood CC (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12

    Article  CAS  Google Scholar 

  • Bella SL, Tuttolomondo T, Lazzeri L, Matteo R, Leto C, Licata M (2019) An agronomic evaluation of new safflower (Carthamus tinctorius L.) germplasm for seed and oil yields under Mediterranean climate conditions. Agronomy 9(468):2–16. https://doi.org/10.3390/agronomy9080468

  • Chavan S, Lokhande V, Nitnaware K, Nikam T (2011) Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl Microbiol Biotechnol 89:1701–1707

    Article  CAS  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  Google Scholar 

  • Claassen CE (1950) Natural and controlled crossing in Safflower, Carthamus tinctorius L. Agron J 42:381–384

    Google Scholar 

  • Devi IS, Ansari NA, Kumar VD (2009) Biofortification of safflower oil with gamma linoleic acid through transgenic approach using delta 6 desaturase gene from Borago officianalis. In: 7th International Safflower Conference, Wagga Wagga, Australia

    Google Scholar 

  • Dhumale DR, Dudhare, Mohite NR, Shingote PR, Jadhav PV, Moharil MP (2015) Refinement of in vitro regeneration system in elite safflower (Carthamus tinctorius L.) genotypes. J Plant Cell Tissue Res 15(1):4849–4854

    Google Scholar 

  • Dhumale DR, Shingote PR, Dudhare MS, Jadhav PV, Kale PB (2016) Parameters influencing Agrobacterium-mediated transformation system in safflower genotypes AKS-207 and PKV Pink. 3 Biotech 6:181. https://doi.org/10.1007/s13205-016-0497-4

    Article  Google Scholar 

  • El-Lattief EA (2012) Evaluation of 25 safflower genotypes for seed and oil yields under arid environment in upper Egypt. Asia J Crop Sci 4(2):72–79

    Article  Google Scholar 

  • FAO (2016) Food and Agriculture Organization of the United Nations. FAOSTAT. Availability at http://www.apps.fao.org

  • FAO (2019) FAO Statistical Yearbook: World Food and Agriculture. Food andAgriculture Organization of the United Nations. http://www.fao.org/docrep

  • FDA (Food and Drug Administration) (2010) Arcadia Biosciences, Inc.; Filing of Food Additive Petition (Animal Use); Safflower Seed Meal. Federal Register 75(202)/Wednesday, October 20, 2010/Notices

    Google Scholar 

  • FDA (Food and Drug Administration) (2015) Federal Register 80(119) Monday, June 22, 2015/rules and regulations

    Google Scholar 

  • FSANZ (2011) Application A1049—food derived from herbicide-tolerant, high oleic acid soybean line MON87705. Assessment report. Food Standards Australia New Zealand

    Google Scholar 

  • FSANZ (2018a) Food standards Australia New Zealand. Commercial release of genetically modified safflower. Regulation of GM Crops and foods developed using gene silencing

    Google Scholar 

  • FSANZ (2018b) Application to food standards Australia and New Zealand for the inclusion of safflower with high oleic acid composition in standard 1.5.2 food produced using Gene Technology

    Google Scholar 

  • Furuya T, Yoshikawa T, Kimura T, Kaneko H (1987) Production of tocopherols by cell culture of safflower. Phytochemistry 26:2741–2747

    Article  CAS  Google Scholar 

  • Gamborg OL, Shyluk JP (2013) Nutrition media and characteristics of plant cell and tissue culture. In: Thorpe TA (ed) Plant tissue culture: methods and applications in agriculture. Academic Press, New York, p 45

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:15–158

    Article  Google Scholar 

  • Gao W, Fan L, Paek K (2000) Yellow and red pigment production by cell cultures of Carthamus tinctorius L in a bioreactor. Plant Cell Tiss Org Cult 60:95–100

    Article  CAS  Google Scholar 

  • George L, Rao PS (1982) In vitro multiplication of safflower (Carthamus tinctorius L.) through tissue culture. Proc Indian Natl Sci Acad B48:791–794

    Google Scholar 

  • Ghorbani E, Hasani Keleshteri R, Shahbazi M, Moradi F, Sadri M (2015) Optimization of extraction yield of carthamine and safflower yellow pigments from safflower (Carthamus tinctorious L.) under different treatments and solvent systems. Res J Pharmacognosy (RJP) 2(1):17–23

    CAS  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015, 2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int:431487. https://doi.org/10.1155/2015/431487

  • GRDC (2010) Raising the bar with better safflower agronomy. Grains Research and Development Corporation ACT, Canberra

    Google Scholar 

  • Guo D, Xue Y, Li D, He B, Jia X, Dong X, Guo M (2017) Overexpression of CtCHS1 increases accumulation of quinochalcone in Safflower. Front Plant Sci 8:1409. https://doi.org/10.3389/fpls.2017.01409

    Article  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol 37:287–296

    Google Scholar 

  • Horrobin DF (1990) Gamma linolenic acid: an intermediate in essential fatty acid metabolism with potential as an ethical pharmaceutical and as a food. Rev Contemp Pharmacother 1:1–45

    Google Scholar 

  • ISAAA (2017) Global status commercialized biotech/ GM crops in 2017: biotech crop adaptation surges as economic benefits accumulate in 22 years ISAAA brief no 53. Ithaca, ISAAA

    Google Scholar 

  • Janmohammadi M, Sabaghnia N, Seifi A, Pasandi M (2017) The impacts of nano-structured nutrients on chickpea performance under supplemental irrigation. Acta Univ Agric Silvic Mendel Brun 3:859–870

    Article  CAS  Google Scholar 

  • Jaychandran V, Ponmanickam P, Samuel P, Sudarmani D, Pandiarajan J (2017) Influence of meta topolin on efficient plant regeneration via micropropation and organogenesis of safflower (Carthamus tinctorius L.) cv. NARI-H-15. Am J Plant Sci 8:688–705

    Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRS (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kumar SP, Kumari BDR (2011) Factors affecting on somatic embryogenesis of safflower (Carthamus tinctorius L) at morphological and biochemical levels. World J Agric Sci 7(2):197–205

    Google Scholar 

  • Kumar SP, Kumari BDR (2017) Indirect somatic embryogenesis from transgenic immature leaf of safflower Carthamus tinctorius (Mohler, Roth, Schmidt & Boudreaux, 1967) (Asterales: Asteraceae). Braz J Biol Sci 4(8):247–258

    Google Scholar 

  • Kumar JV, Kumari BR, Castano E (2008a) Cyclic somatic embryogenesis and efficient plant regeneration from callus of safflower. Biol Plantarum 52:429–436

    Article  CAS  Google Scholar 

  • Kumar JV, Kumari BR, Sujatha G, Castano GS (2008b) Production of plants resistant to Alternaria carthami via organogenesis and somatic embryogenesis of safflower cv. NARI-6 treated with fungal culture filtrates. Plant Cell Tiss Organ Cult 93:85–96

    Article  Google Scholar 

  • Kumar AM, Sundaresha S, Shreevathsa R (2009) Resistance to Alternaria leaf spot disease in transgenic safflower (Carthamus tinctorius L.) harboring a rice chitinase gene. Transgenic Plant J 3(Special issue 1):113–118

    Google Scholar 

  • Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:221–227

    Article  CAS  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    Article  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Liu X, Ahmad N, Yang L, Fu T, Kong J, Na Y, Dong Y, Wang N, Li X, Wang F, Liu X, Liu W, Li H (2019) Molecular cloning and functional characterization of chalcone isomerase from Carthamus tinctorius. AMB Expr 9:132

    Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Intern Plant Prop Soc 30:421–427

    Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2018) An introduction to plant tissue culture: advances and perspectives. Methods Mol Biol 1815:3–13

    Article  CAS  Google Scholar 

  • Mandal AK, Gupta SD (2001) Direct shoot organogenesis and plant regeneration in safflower. In Vitro Cell Dev Biol Plant 37:50–54

    Article  CAS  Google Scholar 

  • Mandal AKA, Gupta SD (2003) Somatic embryogenesis of safflower: influence of auxin and ontogeny of somatic embryos. Plant Cell Tissue Organ Cult 72:27–31

    Article  CAS  Google Scholar 

  • Mandal AA, Chatterji AK, Gupta SD (1995) Direct somatic embryogenesis and plantlet regeneration from cotyledonary leaves of safflower. Plant Cell Tiss Org Cult 43:287–290

    Google Scholar 

  • Mandal AK, Gupta SD, Chatterji AK (2001) Factors affecting somatic embryogenesis from cotyledonary explants of safflower. Biol Plant 44:503–507

    Article  Google Scholar 

  • Matern U, Kneusel RE (1993) The use of recombinant DNA techniques to confer resistance to the Alternaria leaf spot disease of safflower. In: Li D, Yuanzhou H (eds) Proceedings of the 3rd International Safflower Conference, Beijing, June 14–18, 1993, pp 807–815

    Google Scholar 

  • Meselhy M, Kadota S, Mimose Y, Hatakeyama N, Kusai A, Hattori M, Namba T (1993) Two new quinochalcome yellow pigments form Carthamus tictorius and Ca2+ antagonistic activity of tinctorimine. Chem Pharm Bull 41:1796–1802

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107(3):193–232

    Article  CAS  Google Scholar 

  • Mohite N, Dudhare M, Jadhav PV, Moharil MP, Deshmukh A (2014) In vitro shoot regeneration and plantlets development in Safflower (Carthamus tinctorius L.). Bioscan 9(2):551–555

    Google Scholar 

  • Motamedi J, Zebarjadi A, Kahrizi D, Salmanian AH (2011) In vitro propagation and Agrobacterium-mediated transformation of safflower (Carthamus tinctorius L.) using a bacterial mutated aroA gene. Aust J Crop Sci 5(4):479–486

    Google Scholar 

  • Mundel HH, Blackshaw RE, Byers JR, Huang HC, Johnson DL, Keon R, Kubik J, McKenzie R, Otto B, Roth B, Stanford K (2004) Safflower production in the Canadian prairies. Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Murphy D (2016) Plant storage lipids. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0001918.pub3

  • Nikam T, Shitole M (1993) Regeneration of niger (Guizotia abyssinica Cass.) CV Sahyadri from seedling explants. Plant Cell Tissue Organ Cult 32:345–349

    Article  CAS  Google Scholar 

  • Nikam TD, Shitole MG (1999) In vitro culture of safflower L. cv. Bhima: initiation, growth optimization and organogenesis. Plant Cell Tissue Organ Cul 55:15–22

    Article  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  Google Scholar 

  • Nykiforuk CL, Shen Y, Murray EW, Boothe JG, Busseuil D, Rhéaume E, Tardif J, Reid A, Moloney MM (2011) Expression and recovery of biologically active recombinant Apolipoprotein AIMilano from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnol J 9(2):250–263

    Google Scholar 

  • Nykiforuk C, Shewmaker C, Harry I, Yurchenko O, Zhang M, Reed C, Oinam G, Steve Z, Fidantsef A, Boothe J, Moloney M (2012) High level accumulation of gamma linolenic acid (C18:3D6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res 21:367–381

    Article  CAS  Google Scholar 

  • Omidi AH, Sharifmoghaddasi M (2010) Study of safflower varieties for flower and grain yields and fatty acid composition. Adv Environ Biol 4(3):524–527

    Google Scholar 

  • Orlikowska TK, Dyer WE (1993) In vitro regeneration and multiplication of safflower (Carthamus tinctorius L.). Plant Sci 93:151–157

    Google Scholar 

  • Orlikowska TK, Cranston HJ, Dyer WE (1995) Factors influencing Agrobacterium tumefaciens mediated transformation and regeneration of the safflower cultivar ‘Centennial’. Plant Cell Tiss Org Cult 40:85–91

    Article  CAS  Google Scholar 

  • Patial V, Krishna R, Arya G, Singh VK, Agarwal M, Goel S, Jagannath A, Kumar A (2016) Development of an efficient, genotype independent plant regeneration and transformation protocol using cotyledonary nodes in safflower (Carthamus tinctorius L.). J Plant Biochem Biotechnol 25(4):421–432

    Google Scholar 

  • Pingali P, Aiyar A, Abraham M, Rahman A (2019) Transforming food systems for a rising India. In: Agricultural technology for increasing competitiveness of small holders, pp 215–240

    Google Scholar 

  • Prasad BR, Khadeer MA, Seeta P, Anwar SY (1991) In vitro induction of androgenic haploids in safflower (Carthamus tinctorius L.). Plant Cell Rep 10:48–51

    Google Scholar 

  • Radhika K, Sujatha M, Rao NT (2006) Thidiazuron stimulates adventitious shoot regeneration in different safflower explants. Biol Plant 50(2):174–179

    Article  CAS  Google Scholar 

  • Rani A, Panwar A, Sathe M, Alageri KC, Kush A (2018) Biofortification of safflower: an oil seed crop engineered for ALA-targeting better sustainability and plant-based omega-3 fatty acids. Transgenic Res 27(3):253–263. https://doi.org/10.1007/s11248-018-0070-5

    Article  CAS  Google Scholar 

  • Rao SK, Rohini VK (1999) Gene transfer into Indian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotech 16:201–206

    Google Scholar 

  • Rohini VK, Rao SK (2000) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86:1043–1049

    Google Scholar 

  • Rudolphi S, Becker HC, Schierolt A, von Witzke-Ehbrecht (2012) Improved estimation of oil, linoleic and oleic acid and seed hull fractions in safflower by NIRS. J Am Oil Chem Soc 89:363–369

    Article  CAS  Google Scholar 

  • Shah PK, Nilsson J, Kaul S, Fishbein MC, Agelan H, Hamsten A, Johansson J, Karpe F, Cercek B (1998) Effects of recombinant Apolipoprotein A-IMilano on aortic atherosclerosis in Apolipoprotein E–deficient mice. Circulation 97:780–785

    Article  CAS  Google Scholar 

  • Shahrokhnia M, Sepaskhah A (2017) Safflower model for simulation of growth and yield under various irrigation strategies, planting methods and nitrogen fertilization. International J Plant Prod 11(1):167–192

    Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  Google Scholar 

  • Shilpa KS, Dinesh Kumar V, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell Tiss Org Cult 103:387–401. https://doi.org/10.1007/s11240-010-9792-7

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 4:429–435

    Article  CAS  Google Scholar 

  • Singh S, Larkin P, Green A (2019) Fatty acids and pharmamolecules. In: Zeigler R (ed) Sustaining global food security: the nexus of science and policy. CSIRO Publishing, Canberra, pp 97–112

    Google Scholar 

  • Smilovic M, Gleeson T, Adamowski J, Langhorn C (2019) More food with less water—optimizing agricultural water use. Adv Water Resour 123:256–261

    Article  Google Scholar 

  • Sujatha M, Kumar VD (2007) In vitro bud regeneration of Carthamus tinctorius and wild Carthamus species from leaf explants and axillary buds. Biol Plantarum 51:782–786

    Article  CAS  Google Scholar 

  • Surbhaiyya S, Dudhare M, Thakre R, Jahav P, Moharil M, Dhumale D, Umbarkar H (2018) In vitro callus induction from two different explants cotyledonary leaves and hypocotyle in Carthamus tinctorius Linn. var pkv-pink. Indian Res J Genet Biotech 10(1):37–43

    Google Scholar 

  • Tejovathi G, Anwar SY (1984) In vitro induction of capitula from cotyledons of Carthamus tinctorius (safflower). Plant Sci 36:165–168

    Google Scholar 

  • Tejovathi G, Anwar SY (1993) 2,4,5-Trichloro phenoxy propionic acid induced rhizogenesis in Carthamus tinctorius L. Proc Indian Nat Sci Acad B59(6):633–636

    Google Scholar 

  • Topfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Science 268:681–686

    Article  CAS  Google Scholar 

  • Villanueva-Mejia D, Alvarez JC (2017) Genetic improvement of oilseed crops using modern biotechnology. In: Advances in seed biology. Web of Science™ Core Collection (BKCI), pp 295–317

    Google Scholar 

  • Walia N, Amandeep K, Babbar SB (2005) In vitro regeneration of a high oil-yielding variety of safflower (Carthamus tinctorius var HUS-305). J. Plant Biochem Biotechnol 14(1):65–68

    Google Scholar 

  • Walia N, Kaur A, Babbar SB (2007) Proliferation and differentiation from endosperms of Carthamus tinctorius. Biol Plant 51(4):749–753

    Google Scholar 

  • Wood C, Okada S, Taylor M, Menon A, Mathew A, Cullerne D, Stephen SJ, Allen R, Zhou X, Liu Q, Oakeshott J, Singh S, Green A (2018) Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability. Plant Biotechnol J 16:1788–1796

    Article  CAS  Google Scholar 

  • Yang J, Xiong L, Li T (2009) The effect of phytohormones on safflower regeneration plant. J Chinese Med Mater 32:1335–1338

    CAS  Google Scholar 

  • Yelchuri V, Srikanth K, Prasad RBN, Karuna MSL (2019) Olefin metathesis of fatty acids and vegetable oils. J Chem Sci 131:39. https://doi.org/10.1007/s12039-019-1615-8

    Article  CAS  Google Scholar 

  • Ying M, Dyer WE, Bergman JW (1992) Agrobacterium tumefaciens–mediated transformation of safflower (Carthamus tinctorius L.) cv “Centennial”. Plant Cell Rep 11:581–585

    Google Scholar 

  • Zhou X, Tang L, Xu Y, Zhou G, Wang Z (2014) Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: a phytochemical and pharmacological review. J Ethanopharmacol 151(1):27–43

    Google Scholar 

  • Zhu LH, Krens F, Smith MA, Li X et al (2016) Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep 6:22181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukaram D. Nikam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nitnaware, K.M. et al. (2021). Genetic Engineering in Safflower (Carthamus tinctorius L.): Retrospect and Prospect. In: Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T. (eds) Genetically Modified Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-5897-9_10

Download citation

Publish with us

Policies and ethics