Skip to main content

Identification of Potential Key Genes Involved in Progression of Gastric Cancer Using Bioinformatics Analysis

  • Chapter
  • First Online:
Novel therapeutic approaches for gastrointestinal malignancies

Abstract

Background: Despite the extensive effort on gastric cancer (GC) research and its achievement over the last decades, GC continues to remain the third leading cause of cancer mortality in the world. Detection of key genes involved in gastric cancer progression and prognosis leads to efficient approach to treat cancer.

Methods: Two datasets (PRJNA506381 and PRJNA438844) from Sequence Read Archive (SRA) database were analysed using available bioinformatics tools and differently expressed genes (DEGs) were identified. The enrichment, protein–protein interaction (PPI) network and survival analysis were carried out to unaware the potential genes responsible for GC progression.

Results: Totally, 227 upregulated and 247 downregulated genes were obtained, out of that overlapping 45 DEGs were selected for further analysis. Protein digestion and absorption and gastric acid secretion were the most enriched pathways. The PPI network was constructed by GeneMANIA and visualized in Cytoscape having 55 nodes and 689 interactions. Subsequently, NetworkAnalyzer plugin in Cytoscape was used and found 13 hub genes (MT1X, MT1E, MT1H, MT1F, MT1G, MT2A, MT1M, MT1A, MT1B, ATP4A, MT1HL1, PGC and CA9) based on high degree of connectivity ≥30. Further, eight highly connecting genes (KCNE2, CPA2, GIF, DRD5, CTSE, CLIC6, CHIA and LIPF) from the highly enriched modules were selected. Also, the prognostic value of the key genes was checked using Kaplan–Meier plotter, in that MT1X, MT1H, MT1E, ATP4A, KCNE2, CPA2, DRD5, CLIC6 and CHIA were associated with survival in overall survival of GC.

Conclusion: These results reveal that 13 hub genes and 8 highly connecting genes might contribute a major role in GC progression. Further, study of CAP2 could be utilised as potential prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACRG :

Asian Cancer Research Group

ATP4A :

ATPase H+/K+ transporting subunit alpha

CA9 :

Carbonic anhydrase 9

CBLIF :

Cobalamin binding intrinsic factor

CHIA :

Chitinase acidic

CLIC6 :

Chloride intracellular channel 6

CNE-2:

CNE-2 enhancer upstream of SHOX

CPA2 :

Carboxypeptidase A2

CTSE :

Cathepsin E

DEGs :

Differently expressed genes

DRD5 :

Dopamine receptor D5

GC :

Gastric cancer

GO :

Gene ontology

HTS :

High throughput sequencing

KCNE2 :

Potassium voltage-gated channel subfamily E member 2

KEGG :

Kyoto Encyclopedia of Genes and Genomes

LIPF :

Lipase F, gastric type

MCODE :

Molecular complex detection

MT :

Metallothionein

NCBI :

National Centre for Biotechnology Information

NGS :

Next generation sequencing

PGC :

Progastrics in (pepsinogen C)

PPI :

Protein–protein interaction

SRA :

Sequence read archive

References

  1. National Cancer Institute and Editorial Content Team. https://www.cancer.gov/types/stomach/patient/stomach-treatment-pdq. Last Revised 4 Nov 2019

  2. Ma J, Shen H, Kapesa L, Zeng S (2016) Lauren classification and individualized chemotherapy in gastric cancer. Oncol Lett 11:2959–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sitarz R, Skierucha M, Mielko J, Offerhaus J, Maciejewski R, Polkowski W (2018) Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 10:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  5. Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Gastroenterol Rev 14:26–38

    Article  CAS  Google Scholar 

  6. Balakrishnan M, George R, Sharma A, Graham DY (2017) Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep 19:36

    Article  PubMed  PubMed Central  Google Scholar 

  7. McLean MH, El-Omar EM (2014) Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol 11:664–674

    Article  CAS  PubMed  Google Scholar 

  8. Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M (2019) Recent advances in gastric cancer early diagnosis. World J Gastroenterol 25:2029–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chao Wang JZ, Cai M, Zhu Z, Gu W, Yu Y, Zhang X (2015) DBGC: a database of human gastric cancer. PLoS One 10:e0142591

    Article  PubMed  CAS  Google Scholar 

  10. Katona BW, Rustgi AK (2017) Gastric cancer genomics: advances and future directions. Cell Mol Gastroenterol Hepatol 3:211–217

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wong SS, Kim K-M, Ting JC, Yu K, Fu J, Liu S, Cristescu R, Nebozhyn M, Gong L, Yue YG, Wang J, Ronghua C, Loboda A, Hardwick J, Liu X, Dai H, Jin JG, Ye XS, Kang SY, Do IG, Park JO, Sohn TS, Reinhard C, Lee J, Kim S, Aggarwal A (2014) Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing. Nat Commun 5:5477

    Article  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Article  CAS  Google Scholar 

  13. De Re V, Dolcetti R (2019) Genetic and epigenetic mechanisms in gastric cancer. In: Canzonieri V, Giordano A (eds) Gastric cancer in the precision medicine era: diagnosis and therapy. Springer International Publishing, Cham, pp 25–40. https://doi.org/10.1007/978-3-030-04861-7_2

  14. Puneet, Kazmi HR, Kumari S, Tiwari S, Khanna A, Narayan G (2018) Epigenetic mechanisms and events in gastric cancer-emerging novel biomarkers. Pathol Oncol Res 24:757–770

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S (2018) Identification of potential key genes associated with the pathogenesis and prognosis of gastric cancer based on integrated bioinformatics analysis. Front Genet 9:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Leinonen R, Sugawara H, Shumway M (2010) The sequence read archive. Nucleic Acids Res 39:D19–D21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Team RC (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  18. Alboukadel Kassambara AK (2019) Quality control of sequencing data. CRAN

    Google Scholar 

  19. Kaisers W (2019) seqTools: analysis of nucleotide, sequence and quality content on fastq files. R package version 1.20.0

    Google Scholar 

  20. Liao Y, Smyth GK, Shi W (2019) The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47:e47–e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gene Ontology Consortium (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34:D322–D326

    Article  CAS  Google Scholar 

  23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris Q (2018) GeneMANIA update 2018. Nucleic Acids Res 46:W60–W64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagy Á, Lánczky A, Menyhárt O, Győrffy B (2018) Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8:9227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kim N, Jung HC (2010) The role of serum pepsinogen in the detection of gastric cancer. Gut Liver 4:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Si M, Lang J (2018) The roles of metallothioneins in carcinogenesis. J Hematol Oncol 11:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gomulkiewicz A, Podhorska-Okolow M, Szulc R, Smorag Z, Wojnar A, Zabel M, Dziegiel P (2010) Correlation between metallothionein (MT) expression and selected prognostic factors in ductal breast cancers. Folia Histochem Cytobiol 48:242–248

    Article  PubMed  Google Scholar 

  31. Cardoso SV, Barbosa HM, Candellori IM, Loyola AM, Aguiar MC (2002) Prognostic impact of metallothionein on oral squamous cell carcinoma. Virchows Arch 441:174–178

    Article  CAS  PubMed  Google Scholar 

  32. Hishikawa Y, Kohno H, Ueda S, Kimoto T, Dhar DK, Kubota H, Tachibana M, Koji T, Nagasue N (2001) Expression of metallothionein in colorectal cancers and synchronous liver metastases. Oncology 61:162–167

    Article  CAS  PubMed  Google Scholar 

  33. Hengstler JG, Pilch H, Schmidt M, Dahlenburg H, Sagemuller J, Schiffer I, Oesch F, Knapstein PG, Kaina B, Tanner B (2001) Metallothionein expression in ovarian cancer in relation to histopathological parameters and molecular markers of prognosis. Int J Cancer 95:121–127

    Article  CAS  PubMed  Google Scholar 

  34. Wulfing C, van Ahlen H, Eltze E, Piechota H, Hertle L, Schmid KW (2007) Metallothionein in bladder cancer: correlation of overexpression with poor outcome after chemotherapy. World J Urol 25:199–205

    Article  PubMed  CAS  Google Scholar 

  35. Tong M, Lu W, Liu H, Wu J, Jiang M, Wang X, Hao J, Fan D (2019) Evaluation of MT family isoforms as potential biomarker for predicting progression and prognosis in gastric cancer. Biomed Res Int 2019:1–15

    Google Scholar 

  36. Galizia G, Ferraraccio F, Lieto E, Orditura M, Castellano P, Imperatore V, La Manna G, Pinto M, Ciardiello F, La Mura A, De Vita F (2006) p27 downregulation and metallothionein overexpression in gastric cancer patients are associated with a poor survival rate. J Surg Oncol 93:241–252

    Article  CAS  PubMed  Google Scholar 

  37. Janssen AM, van Duijn W, Kubben FJ, Griffioen G, Lamers CB, van Krieken JH, van de Velde CJ, Verspaget HW (2002) Prognostic significance of metallothionein in human gastrointestinal cancer. Clin Cancer Res 8:1889–1896

    CAS  PubMed  Google Scholar 

  38. Shen S, Jiang J, Yuan Y (2017) Pepsinogen C expression, regulation and its relationship with cancer. Cancer Cell Int 17:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Melle C, Ernst G, Schimmel B, Bleul A, Kaufmann R, Hommann M, Richter KK, Daffner W, Settmacher U, Claussen U, von Eggeling F (2005) Characterization of pepsinogen C as a potential biomarker for gastric cancer using a histo-proteomic approach. J Proteome Res 4:1799–1804

    Article  CAS  PubMed  Google Scholar 

  40. Xu Q, Sun LP, Wang BG, Liu JW, Li P, He CY, Yuan Y (2013) The co-expression of functional gastric proteins in dynamic gastric diseases and its clinical significance. BMC Clin Pathol 13:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benej M, Pastorekova S, Pastorek J (2014) Carbonic anhydrase IX: regulation and role in cancer. Subcell Biochem 75:199–219

    Article  CAS  PubMed  Google Scholar 

  42. Chen J, Rocken C, Hoffmann J, Kruger S, Lendeckel U, Rocco A, Pastorekova S, Malfertheiner P, Ebert MP (2005) Expression of carbonic anhydrase 9 at the invasion front of gastric cancers. Gut 54:920–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abbott GW, Roepke TK (2016) KCNE2 and gastric cancer: bench to bedside. Oncotarget 7:17286–17287

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu W, Juan WC, Liang CR, Yeoh KG, So J, Chung MC (2012) S100A9, GIF and AAT as potential combinatorial biomarkers in gastric cancer diagnosis and prognosis. Proteomics Clin Appl 6:152–162

    Article  CAS  PubMed  Google Scholar 

  45. Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, Tang H, Xue YJ, Lou MQ, Zhao W, Le WD, Zhao WG, Zhang X, Wu ZB (2017) Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 13:1404–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Konno-Shimizu M, Yamamichi N, Inada K, Kageyama-Yahara N, Shiogama K, Takahashi Y, Asada-Hirayama I, Yamamichi-Nishina M, Nakayama C, Ono S, Kodashima S, Fujishiro M, Tsutsumi Y, Ichinose M, Koike K (2013) Cathepsin E is a marker of gastric differentiation and signet-ring cell carcinoma of stomach: a novel suggestion on gastric tumorigenesis. PLoS One 8:e56766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ossandon FJ, Villarroel C, Aguayo F, Santibanez E, Oue N, Yasui W, Corvalan AH (2008) In silico analysis of gastric carcinoma Serial Analysis of Gene Expression libraries reveals different profiles associated with ethnicity. Mol Cancer 7:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kong Y, Zheng Y, Jia Y, Li P, Wang Y (2016) Decreased LIPF expression is correlated with DGKA and predicts poor outcome of gastric cancer. Oncol Rep 36:1852–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu X, Chang X (2016) Identifying module biomarkers from gastric cancer by differential correlation network. Onco Targets Ther 9:5701–5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinnarasan, V.S.P., Paul, D., Naorem, L.D., Muthaiyan, M., Ampasala, D.R., Venkatesan, A. (2020). Identification of Potential Key Genes Involved in Progression of Gastric Cancer Using Bioinformatics Analysis. In: Nagaraju, G.P., Peela, S. (eds) Novel therapeutic approaches for gastrointestinal malignancies. Diagnostics and Therapeutic Advances in GI Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5471-1_7

Download citation

Publish with us

Policies and ethics