Skip to main content

Role of Imaging Data in Additive Manufacturing for Biomedical Applications

  • Chapter
  • First Online:
3D Printing in Biomedical Engineering

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

The role of data imaging in additive manufacturing (AM) for biomedical applications was studied in the present chapter. The advancement in the digital image processing techniques has changed the medical practitioners (such as doctors, medical researchers) way of working. The techniques such as computerized tomography (CT), magnetic resonance imaging (MRI), and ultrasound help in scanning in-depth body part details. Further, the sliced scan data is merged and segmented to model a 3D part using different digital image processing tools and used as input file in an AM process. The working principles of different scanning techniques along with their advantages and disadvantages were briefly discussed. The different types of digital image processing software’s available in market to convert scanned data images to a CAD model have been compared on the basis of their advantages, disadvantages, and cost. The steps required from conversion of scanned data to patient-specific implant fabrication by 3D printing were elaborated in detail. AM fabricated parts have tremendous applications in the medical field as medical models for surgery practices or planning, surgical guides, patient-specific implants, etc. The in vitro and in vivo case studies using combination of AM and image processing tools have been discussed in the present chapter. It was revealed that the AM fabricated parts have made a huge contribution for revolutionary change in medical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He J, Li D, Lu B et al (2007) Custom fabrication of a composite hemi-knee joint based on rapid prototyping. Rapid Prototyping 12:198–205. https://doi.org/10.1108/13552540610682705

    Article  Google Scholar 

  2. Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136:061016. https://doi.org/10.1115/1.4028512

    Article  Google Scholar 

  3. Singla A, Singh G, Virk GS (2016) Matlab/simMechanics based control of four-bar passive lower-body mechanism for rehabilitation. Perspectives in Science 8:351–354. https://doi.org/10.1016/j.pisc.2016.04.072

    Article  Google Scholar 

  4. Singh S, Ramakrishna S (2017) Biomedical applications of additive manufacturing: present and future. Curr Opin Biomed Eng 2:105–115. https://doi.org/10.1016/j.cobme.2017.05.006

    Article  Google Scholar 

  5. Hong D, Chou DT, Velikokhatnyi OI et al (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–386. https://doi.org/10.1016/j.actbio.2016.08.032

    Article  Google Scholar 

  6. Goldman LW (2009) Principles of CT and CT Technology. J Nuclear Med Technol 35:115–129. https://doi.org/10.2967/jnmt.107.042978

    Article  Google Scholar 

  7. Thompson A, Mcnally D, Maskery I, Leach RK (2017) X-ray computed tomography and additive manufacturing in medicine: a review. Int J Metrol Qual Eng 8:1–15. https://doi.org/10.1051/ijmqe/2017015

    Article  Google Scholar 

  8. Vaishya R, Lal H (2018) Three common orthopaedic surgical procedures of the lower limb. J Clin Orthop Trauma 9:101–102. https://doi.org/10.1016/j.jcot.2018.04.013

    Article  Google Scholar 

  9. Caldemeyer KS, Buckwalter KA (1999) The basic principles of computed tomography and magnetic resonance imaging. J Am Acad Dermatol 41:768–771

    Article  Google Scholar 

  10. Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ (2008) Implants via MRI and micro-CT using injection molding. Tissue Eng Part A 14(7):1195–1202. https://doi.org/10.1089/ten.tea.2007.0186

    Article  Google Scholar 

  11. Brown MA, Richard SC (2011) MRI: basic principles and applications. John Wiley & Sons

    Google Scholar 

  12. Bernick C, Kuller L, Dulberg C et al (2001) Silent MRI infarcts and the risk of future stroke. Neurology 57:1222–1229

    Article  Google Scholar 

  13. Mitsouras D, Lee TC, Liacouras P et al (2017) Three-dimensional printing of MRI-visible phantoms and MR Image-Guided Therapy simulation. Magn Reson Med 622:613–622. https://doi.org/10.1002/mrm.26136

    Article  Google Scholar 

  14. Lal H, Kumar L, Kumar R et al (2017) Inserting pedicle screws in lumbar spondylolisthesis—The easy bone conserving way. J Clin Orthop Trauma 8:156–164. https://doi.org/10.1016/j.jcot.2016.11.010

    Article  Google Scholar 

  15. Liu J, Wang Y, Katscher U, He B (2017) Electrical properties tomography based on B 1 maps in MRI: principles, applications, and challenges. IEEE Trans Biomed Eng 64:2515–2530. https://doi.org/10.1109/TBME.2017.2725140

    Article  Google Scholar 

  16. Levine LE, Long GG (2004) X-ray imaging with ultra-small-angle X-ray scattering as a contrast mechanism. J Appl Crystallogr 37:757–765. https://doi.org/10.1107/s0021889804016073

    Article  Google Scholar 

  17. Vaezi M, Chua CK, Chou SM (2012) Improving the process of making rapid prototyping models from medical ultrasound images. Rapid Prototyping J 18:287–298. https://doi.org/10.1108/13552541211231716

    Article  Google Scholar 

  18. Bye E, McKinney E (2010) Fit analysis using live and 3D scan models. Int J Clothing Sci Technol 22:88–100. https://doi.org/10.1108/09556221011018586

    Article  Google Scholar 

  19. Choi JW, Wicker RB, Cho SH et al (2009) Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyping J 15:59–70. https://doi.org/10.1108/13552540910925072

    Article  Google Scholar 

  20. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: A review. J Manuf Process 25:185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  21. Jacobs S, Grunert R, Mohr FW, Falk V (2008) 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact CardioVasc Thorac Surg 7:6–9. https://doi.org/10.1510/icvts.2007.156588

    Article  Google Scholar 

  22. Khas KS, Pandey PM, Ray AR (2015) Design and development of a device to measure the deformities of clubfoot. Proc Inst Mech Eng [H] 229:194–204. https://doi.org/10.1177/0954411915574758

    Article  Google Scholar 

  23. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Biochem Pharmacol 16:496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Article  Google Scholar 

  24. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  25. Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Sch Res Netw 2012:1–10. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  26. Chong L, Ramakrishna S, Singh S (2018) A review of digital manufacturing-based hybrid additive manufacturing processes. Int J Adv Manuf Technol 95:2281–2300

    Article  Google Scholar 

  27. Patra S, Young V (2016) A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem Biophys 74:93–98. https://doi.org/10.1007/s12013-016-0730-0

    Article  Google Scholar 

  28. Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting : a systematic literature review. BioMed Eng OnLine, pp 1–21. https://doi.org/10.1186/s12938-016-0236-4

  29. Farid S, Shirazi S, Gharehkhani S et al (2015) A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 16:1–20. https://doi.org/10.1088/1468-6996/16/3/033502

    Article  Google Scholar 

  30. Singh S, Singh R (2016) Fused deposition modelling based rapid patterns for investment casting applications: a review. Rapid Prototyping J 22:123–143. https://doi.org/10.1108/RPJ-02-2014-0017

    Article  Google Scholar 

  31. Wang X, Jiang M, Zhou Z et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  32. Poomathi N, Singh S, Prakash C et al (2018) Bioprinting in ophthalmology: current advances and future pathways. Rapid Prototyping J. https://doi.org/10.1108/RPJ-06-2018-0144

    Article  Google Scholar 

  33. Prakash C, Singh S, Pabla BS et al (2018) Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater Manuf Processes 00:1–12. https://doi.org/10.1080/10426914.2018.1512117

    Article  Google Scholar 

  34. Singh S, Prakash C, Ramakrishna S (2019) 3D printing of polyether-ether-ketone for biomedical applications. Eur Polym J 114:234–248. https://doi.org/10.1016/j.eurpolymj.2019.02.035

    Article  Google Scholar 

  35. Singh S, Singh N, Gupta M et al (2019) Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer. Rapid Prototyping J 25:152–161. https://doi.org/10.1108/RPJ-01-2018-0028

    Article  Google Scholar 

  36. Singh G, Pandey PM (2019) Ultrasonic Assisted Pressureless Sintering for rapid manufacturing of complex copper components. Mater Lett 236:276–280. https://doi.org/10.1016/j.matlet.2018.10.123

    Article  Google Scholar 

  37. Gill SS, Kaplas M (2009) Comparative study of 3D printing technologies for rapid casting of aluminium alloy. Mater Manuf Process 24:1405–1411. https://doi.org/10.1080/10426910902997571

    Article  Google Scholar 

  38. Singh S, Singh R (2015) Wear modelling of Al-Al2O3 functionally graded material prepared by FDM assisted investment castings using dimensionless analysis. J Manuf Process 20:507–514. https://doi.org/10.1016/j.jmapro.2015.01.007

    Article  Google Scholar 

  39. Singh JP, Pandey PM (2018) Fabrication and assessment of mechanical properties of open cell porous regular interconnected metallic structure through rapid manufacturing route. Rapid Prototyping J 24:138–149. https://doi.org/10.1108/RPJ-04-2015-0043

    Article  Google Scholar 

  40. Mun J, Yun BG, Ju J, Chang BM (2015) Indirect additive manufacturing based casting of a periodic 3D cellular metal - Flow simulation of molten aluminum alloy. J Manuf Process 17:28–40. https://doi.org/10.1016/j.jmapro.2014.11.001

    Article  Google Scholar 

  41. Singh G, Pandey PM (2018) Design and analysis of long-stepped horn for ultrasonic assisted sintering. In: 21st International conference on advances in materials and processing technology (AMPT). Dublin, Ireland

    Google Scholar 

  42. Sharma P, Pandey PM (2018) Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Mater Des 160:442–454. https://doi.org/10.1016/j.matdes.2018.09.029

    Article  Google Scholar 

  43. Sharma P, Pandey PM (2018) A novel manufacturing route for the fabrication of topologically-ordered open-cell porous iron scaffold. Mater Lett 222:160–163. https://doi.org/10.1016/j.matlet.2018.03.206

    Article  Google Scholar 

  44. Sharma P, Pandey PM (2018) Rapid manufacturing of biodegradable pure iron scaffold using amalgamation of three-dimensional printing and pressureless microwave sintering. Proc Inst Mech Eng Part C J Mech Eng Sci, 0:1–20. https://doi.org/10.1177/0954406218778304

    Google Scholar 

  45. Singh G, Pandey PM (2019) Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: surface morphology, mechanical properties and energy absorption capacity. Mater Sci Eng, A 761:138035. https://doi.org/10.1016/j.msea.2019.138035

    Article  Google Scholar 

  46. Singh G, Pandey PM (2019) Rapid manufacturing of copper components using 3D printing and ultrasonic assisted pressureless sintering: experimental investigations and process optimization. J Manuf Process 43:253–269. https://doi.org/10.1016/j.jmapro.2019.05.010

    Article  Google Scholar 

  47. Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44:585–594. https://doi.org/10.1016/j.ijmachtools.2003.12.004

    Article  Google Scholar 

  48. Pandey PM, Reddy NV, Dhande SG (2003) Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf 43:61–71. https://doi.org/10.1016/S0890-6955(02)00164-5

    Article  Google Scholar 

  49. Wake N, Chandarana H, Huang WC et al (2016) Application of anatomically accurate, patient-specific 3D printed models from MRI data in urological oncology. Clin Radiol 71:610–614. https://doi.org/10.1016/j.crad.2016.02.012

    Article  Google Scholar 

  50. Starosolski ZA, Kan JH, Rosenfeld SD et al (2014) Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr Radiol 44:216–221. https://doi.org/10.1007/s00247-013-2788-9

    Article  Google Scholar 

  51. Haleem A, Javaid M (2018) Role of CT and MRI in the design and development of orthopaedic model using additive manufacturing. J Clin Orthop Trauma 9:213–217. https://doi.org/10.1016/j.jcot.2018.07.002

    Article  Google Scholar 

  52. Javaid M, Haleem A (2018) Additive manufacturing applications in orthopaedics: a review. J Clin Orthop Trauma 9:202–206. https://doi.org/10.1016/j.jcot.2018.04.008

    Article  Google Scholar 

  53. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery. 5(4):335–341. https://doi.org/10.1007/s11548-010-0476-x

    Article  Google Scholar 

  54. Bernhard JC, Isotani S, Matsugasumi T et al (2016) Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol 34:337–345. https://doi.org/10.1007/s00345-015-1632-2

    Article  Google Scholar 

  55. Young JC, Quayle MR, Adams JW et al (2019) Three-dimensional printing of archived human fetal material for teaching purposes. Anat Sci Educ 12:90–96. https://doi.org/10.1002/ase.1805

    Article  Google Scholar 

  56. Yang L, Shang X, Fan J et al (2016) Application of 3D printing in the surgical planning of trimalleolar fracture and doctor-patient communication. BioMed Res Int Table 2016:1–5

    Google Scholar 

  57. Cohen J, Reyes SA (2016) Creation of a 3D printed temporal bone model from clinical CT data. Am J Otolaryngol-Head Neck Med Surg 36:619–624. https://doi.org/10.1016/j.amjoto.2015.02.012

    Article  Google Scholar 

  58. Ripley B, Kelil T, Cheezum MK et al (2016) 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Computed Tomogr 10:28–36. https://doi.org/10.1016/j.jcct.2015.12.004

    Article  Google Scholar 

  59. Ogden KM, Aslan C, Ordway N et al (2015) Factors affecting dimensional accuracy of 3-D printed anatomical structures derived from CT data. J Digit Imaging 28:654–663. https://doi.org/10.1007/s10278-015-9803-7

    Article  Google Scholar 

  60. Cai T, Rybicki FJ, Giannopoulos AA, et al (2015) The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing : application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Printing Med 2:1–9. https://doi.org/10.1186/s41205-015-0003-3

  61. Hochman JB, Rhodes C, Wong D et al (2015) Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education. The Laryngoscope 125:2353–2357. https://doi.org/10.1002/lary.24919

    Article  Google Scholar 

  62. Markl M, Schumacher R (2005) Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology. Magma 18:288–292. https://doi.org/10.1007/s10334-005-0019-6

    Article  Google Scholar 

  63. Holmer B, Ashby A (2005) How rapid prototyping can assist in the development of new orthopaedic products—a case study. Rapid Prototyping 1:38–41

    Google Scholar 

  64. Sanghera B, Naique S, Papaharilaou Y, Amis A (2006) Preliminary study of rapid prototype medical models. Rapid Prototyping 7:275–284

    Article  Google Scholar 

  65. Hieu LC, Bohez E, Vatcharaporn E et al (2003) Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyping 9:175–186. https://doi.org/10.1108/13552540310477481

    Article  Google Scholar 

  66. Naing MW, Chua CK, Leong KF, Wang Y (2006) Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyping 11:249–259. https://doi.org/10.1108/13552540510612938

    Article  Google Scholar 

  67. Pietrabissa A, Marconi S, Peri A et al (2016) From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy. Surg Endosc 30:366–371. https://doi.org/10.1007/s00464-015-4185-y

    Article  Google Scholar 

  68. Popov VV, Gary J, Kovalevsky MA et al (2018) Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett 8:337–344. https://doi.org/10.1007/s13534-018-0080-5

    Article  Google Scholar 

  69. Phan K, Sgro A, Maharaj MM et al (2016) Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg 2:314–318. https://doi.org/10.21037/jss.2016.12.06

    Article  Google Scholar 

  70. Kumar Malyala S, Kumar RY, Alwala AM (2017) A 3D-printed osseointegrated combined jaw and dental implant prosthesis—a case study. Rapid Prototyping J 23:1164–1169. https://doi.org/10.1108/RPJ-10-2016-0166

    Article  Google Scholar 

  71. Mohammed MI, Fitzpatrick AP, Gibson I (2017) Customised design of a patient specific 3D printed whole mandible implant. KnE Engineering 2:104. https://doi.org/10.18502/keg.v2i2.602

    Article  Google Scholar 

  72. Stoffelen DVC, Eraly K, Debeer P (2015) The use of 3D printing technology in reconstruction of a severe glenoid defect: a case report with 2.5 years of follow-up. J Shoulder Elbow Surg 24:e218–e222. https://doi.org/10.1016/j.jse.2015.04.006

    Article  Google Scholar 

  73. James W, Slabbekoorn MA (1998) Correction of Congenital malar hypoplasia using stereolithography for presurgical planning. Journal of oral and maxillofacial surgery 56:512–517

    Article  Google Scholar 

  74. Ng P, Lee PSV, Goh JCH (2011) Prosthetic sockets fabrication using rapid prototyping technology. Rapid Prototyping 8:53–59. https://doi.org/10.1108/13552540210413310

    Article  Google Scholar 

  75. Yaxiong L, Dichen L, Bingheng L et al (2014) The customized mandible substitute based on rapid prototyping. Rapid Prototyping 9:167–174. https://doi.org/10.1108/13552540310477472

    Article  Google Scholar 

  76. Singare S, Dichen L, Bingheng L et al (2009) Customized design and manufacturing of chin implant based on rapid prototyping. Rapid Prototyping 11:113–118. https://doi.org/10.1108/13552540510589485

    Article  Google Scholar 

  77. Singare S, Yaxiong L, Bingheng L et al (2006) Fabrication of customised maxillo-facial prosthesis using computer-aided design and rapid prototyping techniques. Rapid Prototyping 12:206–213. https://doi.org/10.1108/13552540610682714

    Article  Google Scholar 

  78. Ma J, Du D, Zhao L et al (2016) 3D printing-assisted osteotomy treatment for the malunion of lateral tibial plateau fracture. Injury 47:2816–2821. https://doi.org/10.1016/j.injury.2016.09.025

    Article  Google Scholar 

  79. Zhang YZ, Lu S, Chen B et al (2011) Application of computer-aided design osteotomy template for treatment of cubitus varus deformity in teenagers: a pilot study. J Shoulder Elbow Surg 20:51–56. https://doi.org/10.1016/j.jse.2010.08.029

    Article  Google Scholar 

  80. Khas KS, Pandey PM, Ray AR (2013) Rapid manufacturing of a clubfoot model imitating soft tissue and bones rapid manufacturing of a clubfoot model imitating soft tissue and bones This paper reports an exploration of fabricating a composite clubfoot model consisting of both soft and hard ti. Virtual Phys Prototyping 8:187–192. https://doi.org/10.1080/17452759.2013.836455

    Article  Google Scholar 

  81. Khas KS, Pandey PM, Ray AR (2018) Development of an orthosis for simultaneous three-dimensional correction of clubfoot deformity. Clin Biomech 51:67–75. https://doi.org/10.1016/j.clinbiomech.2017.12.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak M. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, G., Pandey, P.M. (2020). Role of Imaging Data in Additive Manufacturing for Biomedical Applications. In: Singh, S., Prakash, C., Singh, R. (eds) 3D Printing in Biomedical Engineering. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-5424-7_4

Download citation

Publish with us

Policies and ethics