Skip to main content

Regenerative Medicine for Heart Failure: A Comprehensive Overview of Clinical Studies, Current Challenges, and Future Directions

  • Chapter
  • First Online:
Update of Non-Pharmacological Therapy for Heart Failure
  • 401 Accesses

Abstract

Cell therapies have the potential to bring a paradigm shift to the treatment of heart failure (HF). Since the initial report of cell therapy with skeletal myoblasts in HF, a number of preclinical and clinical studies have been conducted, which support the ability of various stem cell populations to improve cardiac function and reduce the infarct size in HF. However, it is still too early in this new era of regenerative cell therapy as the novel modality. To address the fact that no cell therapy has been conclusively shown to be effective, the important issues involved have been discussed. First, the types of stem cells to be clinically investigated in HF have been reviewed; skeletal myoblasts, bone marrow-derived mononuclear and mesenchymal stem cells, adipose tissue-derived cells, and pluripotent stem cells have been discussed with their cell characteristics. Second, differentiation into cardiac lineage or paracrine effects as potential modes of action of stem cells in HF has been discussed. Finally, the routes of administration, cell dose and cell survival, and long-term engraftment have been discussed as current challenges and future directions. The purpose of this chapter is to review the preclinical and clinical studies carried out with respect to the use of stem cells in HF, and to discuss current unresolved issues and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJ. More ‘malignant’ than cancer? Five year survival following a first admission for heart failure. Eur J Heart Fail. 2001;3:315–22.

    Article  CAS  PubMed  Google Scholar 

  2. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.

    Article  PubMed  Google Scholar 

  3. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078–83.

    Article  PubMed  Google Scholar 

  4. Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther. 2004;11:695–704.

    Article  PubMed  Google Scholar 

  5. Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Rozwadowska N, Kalmucki P, Kurpisz M. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the Poznan trial. Eur Heart J. 2005;26:1188–95.

    Article  PubMed  Google Scholar 

  6. Herreros J, Prosper F, Perez A, Gavira JJ, Garcia-Velloso MJ, Barba J, Sanchez PL, Canizo C, Rabago G, Marti-Climent JM, Hernandez M, Lopez-Holgado N, Gonzalez-Santos JM, Martin-Luengo C, Alegria E. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J. 2003;24:2012–20.

    Article  PubMed  Google Scholar 

  7. Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 2012;42(2):181–4.

    Article  PubMed  Google Scholar 

  8. Okada K, Miyata T, Sawa Y. Insurance systems and reimbursement concerning research and development of regenerative medicine in Japan. Regen Med. 2017;12:179–86.

    Article  CAS  PubMed  Google Scholar 

  9. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294–302.

    Article  PubMed  Google Scholar 

  10. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belem L, Vaughn WK, Rangel FO, Assad JA, Carvalho AC, Branco RV, Rossi MI, Dohmann HJ, Willerson JT. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation. 2004;110:II213–8.

    Article  PubMed  Google Scholar 

  11. Hendrikx M, Hensen K, Clijsters C, Jongen H, Koninckx R, Bijnens E, Ingels M, Jacobs A, Geukens R, Dendale P, Vijgen J, Dilling D, Steels P, Mees U, Rummens JL. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation. 2006;114:I101–7.

    Article  PubMed  Google Scholar 

  12. Ang KL, Chin D, Leyva F, Foley P, Kubal C, Chalil S, Srinivasan L, Bernhardt L, Stevens S, Shenje LT, Galinanes M. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during cabg versus cabg alone. Nat Clin Pract Cardiovasc Med. 2008;5:663–70.

    Article  PubMed  Google Scholar 

  13. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222–32.

    Article  CAS  PubMed  Google Scholar 

  14. Yao K, Huang R, Qian J, Cui J, Ge L, Li Y, Zhang F, Shi H, Huang D, Zhang S, Sun A, Zou Y, Ge J. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart. 2008;94:1147–53.

    Article  CAS  PubMed  Google Scholar 

  15. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000;97:3422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  17. Krause DS, Fackler MJ, Civin CI, May WS. Cd34: structure, biology, and clinical utility. Blood. 1996;87:1–13.

    Article  CAS  PubMed  Google Scholar 

  18. Patel AN, Geffner L, Vina RF, Saslavsky J, Urschel HC Jr, Kormos R, Benetti F. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg. 2005;130:1631–8.

    Article  PubMed  Google Scholar 

  19. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  20. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–8.

    Article  PubMed  Google Scholar 

  21. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002;109:337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, IK MN, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, Pérez-David E, Fernández-Santos ME, Serruys PW, Duckers HJ, Kastrup J, Chamuleau S, Zheng Y, Silva GV, Willerson JT, Fernández-Avilés F. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. Am Heart J. 2014;168(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  24. Okura H, Fumimoto Y, Komoda H, Yanagisawa T, Nishida T, Noguchi S, Sawa Y, Matsuyam A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J Artif Organs. 2009;12:123–30.

    Article  CAS  PubMed  Google Scholar 

  25. Okura H, Matsuyama A, Lee CM, Saga A, Kakuta-Yamamoto A, Nagao A, Sougawa N, Sekiya N, Takekita K, Shudo Y, Miyagawa S, Komoda H, Okano T, Sawa Y. Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng Part C Methods. 2010;16:417–25.

    Article  CAS  PubMed  Google Scholar 

  26. Okura H, Komoda H, Saga A, Yamamoto-Kakuta A, Fumimoto Y, Lee C-M, Ichinose A, Sawa Y, Matsuyama A. Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Eng Part C Methods. 2010;16:761–70.

    Article  CAS  PubMed  Google Scholar 

  27. Shudo Y, Miyagawa S, Ohkura H, Fukushima S, Saito A, Kawaguchi N, Matsuura N, Toda K, Sakaguchi T, Nishi H, Yoshikawa Y, Shimizu T, Okano T, Matsuyama A, Sawa Y. Adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction in porcine ischemic cardiomyopathy model. J Heart Lung Transplant. 2017;36:237–9.

    Article  PubMed  Google Scholar 

  28. Trounson A. A rapidly evolving revolution in stem cell biology and medicine. Reprod Biomed Online. 2013;27:756–64.

    Article  CAS  PubMed  Google Scholar 

  29. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, Trouvin JH, Fabreguettes JR, Bellamy V, Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36:2011–7.

    Article  PubMed  Google Scholar 

  30. iPS cell-based therapy for heart disease: clinical application iPS cell-derived cardiomyocytes. http://www.med.osaka-u.ac.jp/eng/archives/2777

  31. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121:293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, Fiumana E, Rastaldo R, Arcarese ML, Mitchell TS, Boni A, Bolli R, Urbanek K, Hosoda T, Anversa P, Leri A, Kajstura J. Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res. 2008;103:107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mathieu M, Bartunek J, El Oumeiri B, Touihri K, Hadad I, Thoma P, Metens T, da Costa AM, Mahmoudabady M, Egrise D, Blocklet D, Mazouz N, Naeije R, Heyndrickx G, McEntee K. Cell therapy with autologous bone marrow mononuclear stem cells is associated with superior cardiac recovery compared with use of nonmodified mesenchymal stem cells in a canine model of chronic myocardial infarction. J Thorac Cardiovasc Surg. 2009;138:646–53.

    Article  PubMed  Google Scholar 

  36. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS. Effect of stromal-cell-derived factor 1 on stemcell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362:697–703.

    Article  CAS  PubMed  Google Scholar 

  37. Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann WK, Zeiher AM, Dimmeler S. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol. 2005;39:733–42.

    Article  CAS  PubMed  Google Scholar 

  38. Shintani Y, Fukushima S, Varela-Carver A, Lee J, Coppen SR, Takahashi K, Brouilette SW, Yashiro K, Terracciano CM, Yacoub MH, Suzuki K. Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. J Mol Cell Cardiol. 2009;47:288–95.

    Article  CAS  PubMed  Google Scholar 

  39. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678–85.

    Article  CAS  PubMed  Google Scholar 

  40. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661–9.

    Article  CAS  PubMed  Google Scholar 

  41. Jujo K, Ii M, Losordo DW. Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol. 2008;45:530–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farahmand P, Lai TY, Weisel RD, Fazel S, Yau T, Menasche P, Li RK. Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation. 2008;118:S130–7.

    Article  PubMed  Google Scholar 

  43. Fukushima S, Coppen SR, Lee J, Yamahara K, Felkin LE, Terracciano CM, Barton PJ, Yacoub MH, Suzuki K. Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS One. 2008;3:e3071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Okura H, Saga A, Soeda M, Miyagawa S, Sawa Y, Daimon T, Ichinose A, Matsuyama A. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction. Biochem Biophys Res Commun. 2012;425:859–65.

    Article  CAS  PubMed  Google Scholar 

  45. Eisen HJ. Skeletal myoblast transplantation: no MAGIC bullet for ischemic cardiomyopathy. Nat Clin Pract Cardiovasc Med. 2008;5:520–1.

    Article  PubMed  Google Scholar 

  46. Zeng L, Hu Q, Wang X, Mansoor A, Lee J, Feygin J, Zhang G, Suntharalingam P, Boozer S, Mhashilkar A, Panetta CJ, Swingen C, Deans R, From AH, Bache RJ, Verfaillie CM, Zhang J. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation. 2007;115:1866–75.

    Article  PubMed  Google Scholar 

  47. Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, Bolli R. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol. 2013;108:346.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work discussed in this chapter was supported in part by the Grants-in-Aid and by the Highway Program for Realization of Regenerative Medicine from the Japan Agency for Medical Research and Development (AMED) to AM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Matsuyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuyama, A. (2020). Regenerative Medicine for Heart Failure: A Comprehensive Overview of Clinical Studies, Current Challenges, and Future Directions. In: Kinugawa, K., Imamura, T. (eds) Update of Non-Pharmacological Therapy for Heart Failure. Springer, Singapore. https://doi.org/10.1007/978-981-15-4843-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4843-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4842-0

  • Online ISBN: 978-981-15-4843-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics