Skip to main content

Legume Responses and Adaptations to Nutrient Deficiencies

  • Chapter
  • First Online:
The Plant Family Fabaceae

Abstract

Legumes have unique mechanisms to respond to nutrient deficiencies that can be considered as important advantages for agricultural purposes. The preponderance of plant-based protein is on the rise, and the market value of protein crops is expected to be worth billions by 2025. To match the global demand for plant-based products, crops productivity must be ensured; however, this might be impaired either by environmental or anthropogenic pressures that lead to soil nutrient disturbance. The responses activated by legumes to nutrient deficiencies and the mechanisms they utilize to adapt to such conditions will be discussed in this chapter. The study of these factors enables breeding programs specific for legumes and crop improvement. Understanding legumes responses also allows for a better management of agricultural practices and the adoption of more sustainable methods. It is important to reflect on the impact of climate change and intensive farming on food quality and on the future of agriculture, and this chapter contributes with important facts about the role of legumes in our current scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, El-Sayed MA, Hashem A, Abd_Allah EF EF, Alqarawi AA, Burritt DJ, Tran LSP (2018) Metabolomics and transcriptomics in legumes under phosphate deficiency in relation to nitrogen fixation by root nodules. Front Plant Sci 9:922

    Article  PubMed  PubMed Central  Google Scholar 

  • Afzal F, Khan T, Khan A, Khan S, Raza H, Ihsan Ahanger MA, Kazi AG (2014) Nutrient defi-ciencies under stress in legumes. In: Azooz MM, Ahmad P (eds) Legumes underenvironmental stress: yield, improvement and adaptations. Wiley, Hoboken, pp 53–65

    Google Scholar 

  • Ahmed S, Hasan M (2014) Legumes: an overview. J Pharm Pharm Sci 2311–4673(2):34–38

    Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94

    Article  Google Scholar 

  • Andjelkovic V (2018) Introductory chapter: climate changes and abiotic stress in plants

    Google Scholar 

  • Antal T, Mattila H, Hakala-Yatkin M, Tyystjärvi T, Tyystjärvi E (2010) Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris. Planta 232:887–898

    Article  CAS  PubMed  Google Scholar 

  • Aparicio V, Costa JL (2007) Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil Tillage Res 96:155–165

    Article  Google Scholar 

  • Archimède H, Eugène M, Marie Magdeleine C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M (2011) Comparison of methane production between C3 and C4 grasses and legumes. Anim Feed Sci Technol 166–167:59–64

    Article  CAS  Google Scholar 

  • Barberon M, Zelazny E, Robert S, Conejero G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci U S A 108:E450–E458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beach RH, Sulser TB, Crimmins A, Cenacchi N, Cole J, Fukagawa NK, Mason-D’croz D, Myers S, Sarofim MC, Smith M, Ziska LH (2019) Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study. Lancet Planet Health 3:e307–e317

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltran JP, Canas LA (2018) Grain and forage legumes: nutritional value and agriculture sustainability. Methods Mol Biol 1822:1–10

    Article  CAS  PubMed  Google Scholar 

  • Boamponsem GA, Leung DWM, Lister C (2017) Insights into resistance to Fe deficiency stress from a comparative study of invitro-selected novel Fe-efficient and Fe-inefficient potato plants. Front Plant Sci 8:1581

    Article  PubMed  PubMed Central  Google Scholar 

  • Calles T, Xipsiti M, Del Castello R (2019) Legacy of the International Year of Pulses. Environ Earth Sci 78:124

    Article  Google Scholar 

  • Chen YT, Wang Y, Yeh KC (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72

    Article  CAS  PubMed  Google Scholar 

  • Chutia R, Abel S, Ziegler J (2019) Iron and phosphate deficiency regulators concertedly control coumarin profiles in arabidopsis thaliana roots during iron, phosphate, and combined deficiencies. Front Plant Sci 10:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol 14:868–877

    Article  Google Scholar 

  • Conant R, Ryan M, Ågren GI, Birgé H, Davidson E, Eliasson P, Evans S, Frey S, Giardina C, Hopkins F, Hyvönen R, Kirschbaum M, Lavallee J, Leifeld J, Parton W, Steinweg JM, Wallenstein M, Wetterstedt M, Bradford M (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404

    Article  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curci M, Pizzigallo MDR, Crecchio C, Mininni R, Ruggiero P (1997) Effects of conventional tillage on biochemical properties of soils. Biol Fertil Soils 25:1–6

    Article  CAS  Google Scholar 

  • Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A (2017) Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: a meta-analysis. Scientific Reports 7:12117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deppermann A, Havlík P, Valin H, Boere E, Herrero M, Vervoort J, Mathijs E (2018) The market impacts of shortening feed supply chains in Europe. Food Security 10:1401–1410

    Article  Google Scholar 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Frontiers in Plant Science 9:924

    Article  PubMed  PubMed Central  Google Scholar 

  • Dotaniya ML, Aparna K, Dotaniya CK, Singh M, Regar KL (2019) Role of soil enzymes in sustainable crop production (Chap. 33). In: Kuddus M (ed) Enzymes in food biotechnology. Springer, NY

    Google Scholar 

  • Ellet LJ (2019) Rise of the health conscious consumer continue to redefefine consumer markets (Online). Available https://home.kpmg/uk/en/home/media/press-releases/2019/03/rise-of-the-health-conscious-consumer-continue-to-redefine-consumer-markets.html. Accessed 4 Nov 2019

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Fagodiya RK, Pathak H, Kumar A, Bhatia A, Jain N (2017) Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Sci Reports 7:44928

    CAS  Google Scholar 

  • Fan C, Wang X, Hu R, Wang Y, Xiao C, Jiang Y, Zhang X, Zheng C, Fu Y-F (2013) The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine maxL. BMC Plant Biol 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fao I, UNICEF, WFP and WHO (2019) The state of food security and nutrition in the world 2019. Safeguarding against economic slowdowns and downturns (Online). Rome, FAO [Accessed]

    Google Scholar 

  • Filiz E, Kurt F (2019) FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: genome-wide identification and bioinformatics analyses. J Plant Biochem Biotech

    Google Scholar 

  • Fourcroy P, Siso-Terraza P, Sudre D, Saviron M, Reyt G, Gaymard F, Abadia A, Abadia J, Alvarez-Fernandez A, Briat JF (2014) Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 201:155–167

    Article  CAS  PubMed  Google Scholar 

  • Goh CH, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Pérez S, Arellano JB (2009) 15—vegetable protein isolates. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Cambridge

    Google Scholar 

  • Gu M, Chen A, Sun S, Xu G (2016) Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Mol Plant 9:396–416

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10

    Google Scholar 

  • Hazell P, Wood S (2008) Drivers of change in global agriculture. Philosophical transactions of the Royal Society of London. Series B, Biol Sci 363:495–515

    Article  Google Scholar 

  • Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho M, Sotomayor J, Brown K, Lynch J (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32

    Google Scholar 

  • Jacques P, Jacques J (2012) Monocropping cultures into ruin: the loss of food varieties and cultural diversity. Sustainability 4:2970–2997

    Article  Google Scholar 

  • Jeuffroy MH, Baranger E, Carrouée B, De Chezelles E, Gosme M, Hénault C, Schneider A, Cellier P (2013) Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 10:1787–1797

    Article  CAS  Google Scholar 

  • Jung J-Y, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Zhao W, Richards JT, Wheeler RM, Guy CL, Levine LH (2012) Transcriptional and metabolic insights into the differential physiological responses of arabidopsis to optimal and supraoptimal atmospheric CO2. PLoS ONE 7:e43583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinert A, Venter M, Kossmann J, Valentine A (2014) The reallocation of carbon in P deficient lupins affects biological nitrogen fixation. J Plant Physiol 171:1619–1624

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant, Cell Environ 37:852–863

    Article  CAS  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe S, Blair M, Lynch J (2004) Basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959

    Article  CAS  PubMed  Google Scholar 

  • Lienhardt T, Black K, Saget S, Costa MP, Chadwick D, Rees RM, Williams M, Spillane C, Iannetta PM, Walker G, Styles D (2019) Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe’s protein deficit and mitigate climate change. Environ Int 130:104870

    Article  PubMed  Google Scholar 

  • Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fan Y, Zou J, Fang Y, Wang L, Wang M, Jiang X, Liu Y, Gao J, Zhang C (2017) A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. Plant J 92:1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Contador CA, Fan K, Lam HM (2018) Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Front Plant Sci 9:1860

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Arredondo DL, Sánchez-Calderón L, Yong-Villalobos L (2017) Molecular and genetic basis of plant macronutrient use efficiency: concepts, opportunities, and challenges. In: Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujieara T (eds) plant macronutrient use efficiency. Academic Press, Cambridge

    Google Scholar 

  • Ludewig F, Sonnewald U (2000) High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Lett 479:19–24

    Article  CAS  PubMed  Google Scholar 

  • Machekano H, Mvumi BM, Chinwada P, Kageler SJ, Rwafa R (2019) Evaluation of alternatives to synthetic pesticides under small-scale farmer-managed grain storage conditions. Crop Protect 126:104941

    Article  CAS  Google Scholar 

  • Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Garcia-Mina JM, Yvin JC, Ourry A (2015) Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci 6:317

    Article  PubMed  PubMed Central  Google Scholar 

  • Maphosa Y, Jideani VA (2017) The role of legumes in human nutrition, functional food. In: Hueda MC (ed) Improve health through adequate food. Intech Open. https://doi.org/10.5772/intechopen.69127

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46

    Article  CAS  PubMed  Google Scholar 

  • Matimati I, Verboom GA, Cramer MD (2014) Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis? Oecologia 175:1129–1142

    Article  PubMed  Google Scholar 

  • Mcdermott J, Wyatt AJ (2017) The role of pulses in sustainable and healthy food systems. Ann N Y Acad Sci 1392:30–42

    Article  PubMed  Google Scholar 

  • Medawar E, Huhn S, Villringer A, Veronica Witte A (2019) The effects of plant-based diets on the body and the brain: a systematic review. Translat Psych 9:226

    Article  Google Scholar 

  • Mertens M, Höss S, Neumann G, Afzal J, Reichenbecher W (2018) Glyphosate, a chelating agent-relevant for ecological risk assessment? Environ Sci Pollut Res Int 25:5298–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaels TE (2016) Grain legumes and their dietary impact: overview. Reference Module in Food Science. Elsevier

    Google Scholar 

  • Mirmiran P, Hosseinpour-Niazi S, Azizi F (2018) Therapeutic lifestyle change diet enriched in legumes reduces oxidative stress in overweight type 2 diabetic patients: a crossover randomised clinical trial. Eur J Clin Nutr 72:174–176

    Article  CAS  PubMed  Google Scholar 

  • Morgan JB (2019b) Nature news (Online). Available https://www.nature.com/scitable/knowledge/library/plant-soil-interactions-nutrient-uptake-105289112/. Accessed 4 Nov 2019

  • Murphy KJ, Marques-Lopes I, Sánchez-Tainta A (2018) Cereals and legumes (Chap 7). In: Sánchez-Villegas A, Sánchez-Tainta A (eds) The prevention of cardiovascular disease through the mediterranean diet. Academic Press, Cambridge

    Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasr Esfahani M, Kusano M, Nguyen KH, Watanabe Y, Ha CV, Saito K, Sulieman S, Herrera-Estrella L, Tran LS (2016) Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism. Proc Natl Acad Sci USA 113:E4610–E4619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nearing M, Pruski F, O’neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59:43

    Google Scholar 

  • Nemecek T, Richthofen J-S, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393

    Article  Google Scholar 

  • Niu Y, Chai R, Liu L, Jin G, Liu M, Tang C, Zhang Y (2014) Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. Plant, Cell Environ 37:2795–2813

    Article  CAS  Google Scholar 

  • Olney DK, Pedehombga A, Ruel MT, Dillon A (2015) A 2-year integrated agriculture and nutrition and health behavior change communication program targeted to women in Burkina Faso reduces anemia, wasting, and diarrhea in children 3—12.9 months of age at baseline: a cluster-randomized controlled trial. J Nutr 145:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Parker J (2001) Rhizobium. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, New York

    Google Scholar 

  • Perring M, Cullen B, Johnson I, Hovenden M (2010) Modelled effects of rising CO2 concentration and climate change on native perennial grass and sown grass-legume pastures. Clim Res 42:65–78

    Article  Google Scholar 

  • Pilorgé E, Muel F (2016) What vegetable oils and proteins for 2030? Would the protein fraction be the future of oil and protein crops?⋆. OCL 23:D402

    Article  Google Scholar 

  • Polak R, Phillips EM, Campbell A (2015) Legumes: health benefits and culinary approaches to increase intake. Clin Diab Publ Am Diab Assoc 33:198–205

    Google Scholar 

  • Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21

    Article  PubMed  Google Scholar 

  • Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14:458–467

    Article  CAS  PubMed  Google Scholar 

  • Potera C (2007) Agriculture: pesticides disrupt nitrogen fixation. Environ Health Perspect 115:A579–A579

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid R, Hayes J (2003) Mechanisms and control of nutrient uptake in plants. Int Rev Cytol 229:73–114

    Article  CAS  PubMed  Google Scholar 

  • Roriz M, Barros M, Castro PML, Carvalho S, Vasconcelos MW (2020) Improving iron nutrition in plant foods. In: Noureddine Benkeblia (ed) The Role of Legumes and Soil Microbes. https://doi.org/10.1002/9781119511144.ch6

  • Rotaru V (2009) Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environ Experim Botany 66:94–99

    Article  CAS  Google Scholar 

  • Sage RF, Zhu X-G (2011) Exploiting the engine of C4 photosynthesis. J Exp Bot 62:2989–3000

    Article  CAS  PubMed  Google Scholar 

  • Saini RK, Nile S, Keum YS (2016) Food science and technology for management of iron deficiency in humans: a review. Trends in Food Science & Technology 53:13

    Article  CAS  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2006) Characterization of <em> low phosphorus insensitive </em> mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of arabidopsis to phosphorus deficiency. Plant Physiol 140:879–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos CS, Roriz M, Carvalho SMP, Vasconcelos MW (2015) Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). Front Plant Sci 6:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos C, Serrão I, Vasconcelos M (2016) Comparative analysis of iron deficiency chlorosis responses in soybean (Glycine max) and barrel medic (Medicago truncatula). Revista de Ciencias Agrarias 39:70–81

    Google Scholar 

  • Santos CS, Benkeblia N, Vasconcelos MW (2017) Strategies for enhancing phytonutrient content in plant based foods. In: Benkeblia N (ed) Phytonutritional improvement of crops. Wiley, Sussex, pp 203–232

    Google Scholar 

  • Santos CS, Deuchande T, Vasconcelos MW (2019a) Molecular aspects of iron nutrition in plants. In: Cánovas FM, Lüttge U, Leuschner C, Risueño M-C (eds) Progress in Botany, vol 81. Springer, Cham, pp 125–56

    Google Scholar 

  • Santos CS, Ozgur R, Uzilday B, Turkan I, Roriz M, Rangel A, Carvalho SMP, Vasconcelos MW (2019b) Understanding the role of the antioxidant system and the tetrapyrrole cycle in iron deficiency chlorosis. Plants (Basel) 8:348

    Article  CAS  Google Scholar 

  • Sathe SK (2016) Beans, overview. Reference module in food science. Elsevier

    Google Scholar 

  • Scheelbeek P (2018) Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc Nat Acad Sci 115:6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheublin TR, Ridgway KP, Young JPW, Van Der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid NB, Giehl RFH, Döll S, Mock H-P, Strehmel N, Scheel D, Kong X, Hider RC, Von Wirén N (2014) Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in arabidopsis. Plant Physiol 164:160–172

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Günther C, Weber M, Spörlein C, Loscher S, Böttcher C, Schobert R, Clemens S (2014) Metabolome analysis of arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS ONE 9:e102444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shafique A, Rehman S, Khan A, Kazi AG (2014) Improvement of legume crop production under environmental stresses through biotechnological intervention (Chap 1). In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego

    Google Scholar 

  • Sharma RC (2009) Cereal-based cropping systems in Asia: nutrition and disease management (Chap. 5). In: Sadras V, Calderini D (eds) Crop physiology. Academic Press, San Diego

    Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567

    Article  CAS  PubMed  Google Scholar 

  • Sisó-Terraza P, Rios J, Abadía J, Abadía A, Alvarez-Fernández A (2015) Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. New Phytol 209:733

    Article  PubMed  CAS  Google Scholar 

  • Slatni T, Krouma A, Aydi S, Chaiffi C, Gouia H, Abdelly C (2008) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L) subjected to iron deficiency. Plant Soil 312:49–57

    Article  CAS  Google Scholar 

  • Slattery RA, Ainsworth EA, Ort DR (2013) A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap. J Exp Bot 64:3723–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith FW (2001) Plant responses to nutritional stresses. In: molecular analysis of plant adaptation to the environment. Springer, Dordrecht, pp 249–269

    Google Scholar 

  • Soares J, Deuchande T, Valente LMP, Pintado M, Vasconcelos MW (2019a) Growth and nutritional responses of bean and soybean genotypes to elevated CO2 in a controlled environment. Plants 8:465

    Article  CAS  PubMed Central  Google Scholar 

  • Soares JC, Santos CS, Carvalho SMP, Pintado MM, Vasconcelos MW (2019b) Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant Soil 443:1–26

    Article  CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2

    Article  Google Scholar 

  • Stinner PW (2015) The use of legumes as a biogas substrate—potentials for saving energy and reducing greenhouse gas emissions through symbiotic nitrogen fixation. Energy, Sustain Soc 5:4

    Article  Google Scholar 

  • Sugiyama A, Yazaki K (2012) Root exudates of legume plants and their involvement in interactions with soil microbes

    Google Scholar 

  • Sulieman S, Tran LS (2017) Legume nitrogen fixation in soils with low phosphorus availability: adaptation and regulatory implication

    Google Scholar 

  • Tate RLI (2005) Encyclopedia of soils in the environment: volume 1–4. Soil Sci 170:669

    Article  CAS  Google Scholar 

  • Thuynsma R, Valentine A, Kleinert A (2014) Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus. J Plant Physiol 171:285–291

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019

    Article  CAS  Google Scholar 

  • Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179:14–27

    Article  CAS  Google Scholar 

  • Triplett G, Dick W (2008) No-tillage crop production: a revolution in agriculture. Agron J 100:153

    Article  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    Article  CAS  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardien W, Steenkamp ET, Valentine AJ (2016) Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply. J Plant Physiol 191:73–81

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos MW, Gomes AM (2016) The legume grains: when tradition goes hand in hand with nutrition. In: Kristbergsson K, Oliveria J (eds) Traditional foods: general and consumer aspects. Springer, US, Boston, MA

    Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    Article  CAS  PubMed  Google Scholar 

  • White P, Brown P (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams M, Lean M, Pogson B, Martin C (2012) Plants, food and human health: you are what you eat? The plant cell

    Google Scholar 

  • Xiong H, Guo X, Kobayashi T, Kakei Y, Nakanishi H, Nozoye T, Zhang L, Shen H, Qiu W, Nishizawa NK, Zuo Y (2014) Expression of peanut iron regulated transporter 1 in tobacco and rice plants confers improved iron nutrition. Plant Physiol Biochem 80:83–89

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Tarafdar J (2001) Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils 34:140–143

    Article  CAS  Google Scholar 

  • Yang TJW, Perry PJ, Ciani S, Pandian S, Schmidt W (2008) Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J Exp Bot 59:3453–3464

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiang X, Wei D, Zhao B, Ma M, Chen S, Cao F, Shen D, Guan D, Li J (2017) Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci Rep 7:3267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Funds from FCT—Fundação para a Ciência e a Tecnologia through project PTDC/AGRPRO/3972/2014. We would also like to thank the scientific collaboration under the FCT project UID/Multi/50016/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta W. Vasconcelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, R.D.C., Santos, C.S., Vasconcelos, M.W. (2020). Legume Responses and Adaptations to Nutrient Deficiencies. In: Hasanuzzaman, M., Araújo, S., Gill, S. (eds) The Plant Family Fabaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-4752-2_14

Download citation

Publish with us

Policies and ethics