Skip to main content
Log in

Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The significance of soil water redistribution by roots and nocturnal transpiration for nutrient acquisition were assessed for deep-rooted 3-year-old leguminous Aspalathus linearis shrubs of the Cape Floristic Region (South Africa). We hypothesised that hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition by releasing moisture in shallow soil to enable acquisition of shallow-soil nutrients during the summer drought periods and by driving water fluxes from deep to shallow soil powering mass-flow nutrient acquisition, respectively. A. linearis was supplied with sub-surface (1-m-deep) irrigation rates of 0, 2 or 4 L day−1 plant−1. Some plants were unfertilized, whilst others were surface- or deep-fertilized (1 m depth) with Na15NO3 and CaP/FePO4. We also supplied deuterium oxide (2H2O) at 1 m depth at dusk and measured its predawn redistribution to shallow soil and plant stems. Hydraulic redistribution of deep water was substantial across all treatments, accounting for 34–72 % of surface-soil predawn moisture. Fourteen days after fertilization, the surface-fertilized plants exhibited increased hydraulic redistribution and increased 15N and P acquisition with higher rates of deep-irrigation. Deep-fertilization also increased hydraulic redistribution to surface soils, although these plants additionally accumulated 2H2O in their stem tissue overnight, probably due to nocturnal transpiration. Plants engaged in nocturnal transpiration also increased 15N and P acquisition from deep fertilizer sources. Thus, both nocturnal transpiration and hydraulic redistribution increased acquisition of shallow soil N and P, possibly through a combination of increased nutrient availability and mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aanderud ZT, Richards JH (2009) Hydraulic redistribution may stimulate decomposition. Biogeochemistry 95:323–333. doi:10.1007/s10533-009-9339-3

    Article  Google Scholar 

  • Allen SC, Jose S, Nair PKR, Brecke BJ, Nkedi-kizza P, Ramsey CL (2004) Safety-net role of tree roots: evidence from a pecan (Carya illinoensis K. Koch)—cotton (Gossypium hirsutum L.) alley cropping system in the southern United States. Forest Ecol Manag 192:395–407. doi:10.1016/j.foreco.2004.02.009

    Article  Google Scholar 

  • Armas C, Kim JH, Bleby TM, Jackson RB (2012) The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species. Oecologia 168:11–22. doi:10.1007/s00442-011-2065-2

    Article  PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, (2nd edn). Wiley, New York

  • Barber SA, Olson RA (1968) Fertilizer use on corn. In: Nelson LB, McVickar MH, Munson RD, Seatz LF, Tisdale SL, White WC (eds) Changing patterns in fertilizer use. Soil Science Society of America, Madison, pp 163–188

    Google Scholar 

  • Bauerle TL, Richards JH, Smart DR, Eissenstat DM (2008) Importance of internal hydraulic redistribution for prolonging the lifespan of roots in drying soil. Plant Cell Environ 31:177–186. doi:10.1111/j.1365-3040.2007.01749.x

    CAS  PubMed  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Ann Rev Plant Physiol 24:225–252. doi:10.1146/annurev.pp.24.060173.001301

    Article  CAS  Google Scholar 

  • Brooks JR, Meinzer FC, Coulombe R (2002) Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol 22:1107–1117. doi:10.1093/treephys/22.15-16.1107

    Article  PubMed  Google Scholar 

  • Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes, in: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photo-synthesis: physiology and metabolism. Kluwer, The Netherlands, pp 399–434

  • Burgess SSO, Bleby TM (2006) Redistribution of soil water by lateral roots mediated by stem tissues. J Exp Bot 57:3283–3291. doi:10.1093/jxb/erl085

    Article  CAS  PubMed  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311. doi:10.1007/s004420050521

    Article  Google Scholar 

  • Burgess SSO, Adams MA, Bleby TM (2000) Measurement of sap flow in roots of woody plants: a commentary. Tree Physiol 20:909–913. doi:10.1093/treephys/20.13.909

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161. doi:10.1007/s004420050363

    Article  Google Scholar 

  • Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Ann Rev Ecol Evol Syst 37:459–488. doi:10.1146/annurev.ecolsys.37.091305.110207

    Article  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381. doi:10.1093/jexbot/51.342.61

    Article  CAS  Google Scholar 

  • Cernusak LA, Winter K, Turner BL (2011) Transpiration modulates phosphorus acquisition in tropical tree seedlings. Tree Physiol 31:878–885. doi:10.1093/treephys/tpr077

    Article  PubMed  Google Scholar 

  • Clarkson DT (1981) Nutrient interception and transport by root systems. In: Johnson CB (ed) Physiological factors limiting plant productivity. Butterworths, London, pp 307–314

    Chapter  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 342:61–70. doi:10.1093/jexbot/51.342.61

    Article  Google Scholar 

  • Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995. doi:10.1021/ac00243a035

    Article  CAS  Google Scholar 

  • Cramer MD, Hoffmann V, Verboom GA (2008) Nutrient availability moderates transpiration in Ehrharta calycina. New Phytol 179:1048–1057

  • Cramer MD, Hawkins H-J, Verboom AG (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24. doi:10.1007/s00442-009-1364-3

    Article  PubMed  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95:565–574. doi:10.1007/BF00317442

    Google Scholar 

  • Dawson TE (1997) Water loss from tree influences soil water nutrient status and plant performance. In: Flores EH, Lynch JP, Eissenstat D (eds) Radical biology: advances and perspectives on the function of plant roots, vol 18. American Society of Plant Physiologists, Rockville, pp 235–250

    Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559. doi:10.1146/annurev.ecolsys.33.020602.095451

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137. doi:10.1071/PP9820121

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40:503–537. doi:10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Garrish V, Cernusak LA, Winter K, Turner BL (2010) Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida. J Exp Bot 61:3735–3748. doi:10.1093/jxb/erq183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gérard A (2010) Habitat conditions of wild Rooibos tea (Aspalathus linearis): Environmental abiotic and biotic drivers of its performance. Ms thesis, Universität Hamburg

  • Gloser V, Zwieniecki MA, Orians C, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409–2415. doi:10.1093/jxb/erm118

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt P (1997) Floristic diversity in the Cape Flora of South Africa. Biodivers Conserv 6:359–377. doi:10.1023/A:1018360607299

    Article  Google Scholar 

  • Gorska A, Ye Q, Holbrook NM, Zwieniecki MA (2008) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148:1159–1167. doi:10.1104/pp.108.122499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins H-J, Hettasch H, West AG, Cramer MD (2009) Hydraulic redistribution by Protea “Sylvia” (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub. Funct Plant Biol 36:752–760. doi:10.1071/FP09046

    Article  Google Scholar 

  • Hawkins H-J, Malgas R, Biénabe E (2011) Ecotypes of wild rooibos (Aspalathus linearis (Burm. F) Dahlg., Fabaceae) are ecologically distinct. S Afr J Bot 77:360–370. doi:10.1016/j.sajb.2010.09.014

    Article  Google Scholar 

  • Hoarau J, Barthes L, Bousser A, Deleens E, Prioul JL (1996) Effect of nitrate on water transfer across roots of nitrogen pre-starved maize seedlings. Planta 200:405–415. doi:10.1007/BF00231396

    Article  CAS  Google Scholar 

  • Howard AR, Van Iersel MW, Richards JH, Donovan LA (2009) Nocturnal transpiration can decrease hydraulic redistribution. Plant Cell Environ 32:1060–1070. doi:10.1111/j.1365-3040.2009.01988.x

    Article  PubMed  Google Scholar 

  • Hultine KR, Cable WL, Burgess SSO, Williams DG (2003) Hydraulic redistribution by deep roots of a Chihuahuan Desert phreatophyte. Tree Physiol 23:353–360. doi:10.1093/treephys/23.5.353

    Article  CAS  PubMed  Google Scholar 

  • Hultine KR, Scott RL, Cable WL, Goodrich DC, Williams DG (2004) Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Funct Ecol 18:530–538. doi:10.1111/j.0269-8463.2004.00867.x

    Article  Google Scholar 

  • Jackson RB, Caldwell MM (1993) The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecol 74:612–614. doi:10.2307/1939320

    Article  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488. doi:10.1016/S1360-1385(00)01766-0

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke JB, Scholl MA, Cozzarelli IM, Masoner JR, Christenson S, Qi H (2011) Stable-isotope ratios of hydrogen and oxygen in precipitation at Norman, Oklahoma, 1996–2008: U.S. Geological Survey Scientific Investigations Report, 2011–5262

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389. doi:10.1890/03-0245

    Article  Google Scholar 

  • Kalra YP (1998) Handbook of standard methods of plant analysis. CRC Press, Boca Raton

    Google Scholar 

  • Kovda BA (1983) Agrology principle. Science Press, Beijing, p 17

    Google Scholar 

  • Kupper P, Rohula G, Saksing L, Sellin A, Lõhmus K, Ostonen I, Helmisaari H-S, Sõber A (2012) Does soil nutrient availability influence nocturnal water flux of aspen saplings? Environ Exp Bot 82:37–42. doi:10.1016/j.envexpbot.2012.03.013

    Article  CAS  Google Scholar 

  • Kurz-Besson C, Otieno D, Lobo do Vale R, Siegwolf R, Schmidt M, Herd A, Nogueira C, David TS, David JS, Tenhunen J, Pereira JS, Chaves M (2006) Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282:361–378. doi:10.1007/s11104-006-0005-4

    Article  CAS  Google Scholar 

  • Lambers H, Chapin III FS, Pons TL (1998) Plant physiological ecology. Springer, New York, pp 239–298. doi:10.1007/978-1-4757-2855-2

  • Leffler AJ, Ivans CY, Ryel RJ, Caldwell MM (2004) Gas exchange and growth responses of the desert shrubs Artemisia tridentata and Chrysothamnus nauseosus to shallow- vs. deep-soil water in a glasshouse experiment. Environ Exp Bot 51:9–19. doi:10.1016/S0098-8472(03)00041-8

    Article  Google Scholar 

  • Leffler AJ, Peek MS, Ryel RJ, Ivans CY, Caldwell MM (2005) Hydraulic redistribution through the root systems of senesced plants. Ecol 86:633–642. doi:10.1890/04-0854

    Article  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90. doi:10.1007/s00572-010-0348-9

    Article  PubMed  Google Scholar 

  • Ludwig F, Dawson TE, Kroon H, Berendse F, Prins HHT (2003) Hydraulic lift in Acacia tortilis trees on an East African savanna. Oecologia 134:293–300. doi:10.1007/s00442-002-1119-x

    CAS  PubMed  Google Scholar 

  • Ludwig F, Dawson TE, Prins HHT, Berendse F, de Kroon H (2004) Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift. Ecol Lett 7:623–631. doi:10.1111/j.1461-0248.2004.00615.x

    Article  Google Scholar 

  • Lund ZF (1959) Available water-holding capacity of alluvial soils in Louisiana. Soil Sci Soc Am J 23:1–3. doi:10.2136/sssaj1959.03615995002300010009x

    Article  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049. doi:10.1104/pp.111.175414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347-357. doi:10.1093/aob/mcs293

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. doi:10.1023/A:1013324727040

    Article  CAS  Google Scholar 

  • Matimati I, Verboom GA, Cramer MD (2014) Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. J Exp Bot 65:159–168. doi:10.1093/jxb/ert367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matzner SL, Richards JH (1996) Sagebrush (Artemisia tridentata Nutt.) roots maintain nutrient uptake capacity under water stress. J Exp Bot 47:1045–1056. doi:10.1093/jxb/47.8.1045

    Article  CAS  Google Scholar 

  • Moll EJ, Campbell BM, Cowling RM, Bossi L, Jarman ML, Boucher C (1984) Description of major vegetation categories in and adjacent to the Fynbos biome. National Scientific Programmes Unit: CSIR, SANSP Report 83, Mar 1984

  • Morton JF (1983) Rooibos tea, Aspalathus linearis a caffeinless, low-tannin beverage. Econ Bot 37:164–173

  • Muñoz MR, Squeo F, León MF, Tracol Y, Gutiérrez JR (2008) Hydraulic lift in three shrub species from the Chilean coastal desert. J Arid Environ 72:624–632. doi:10.1016/j.jaridenv.2007.09.006

    Article  Google Scholar 

  • Nadezhdina N, David TS, David JS, Ferreira MA, Dohnal M, Tesa M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J et al (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrol 3:431–444. doi:10.1002/eco.148

    Article  Google Scholar 

  • Nambiar EKS (1976) Uptake of Zn65 from dry soil by plants. Plant Soil 44:267–271. doi:10.1007/BF00016978

    Article  CAS  Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modelling studies. New Phytol 194:337–352. doi:10.1111/j.1469-8137.2012.04088.x

    Article  PubMed  Google Scholar 

  • Pang J, Wang Y, Lambers H, Tibbett M, Siddique KH, Ryan MH (2013) Commensalism in an agroecosystem: hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion. Physiol Plant. doi:10.1111/ppl.12020

    PubMed  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269. doi:10.1007/s00442-003-1218-3

    Article  PubMed  Google Scholar 

  • Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527. doi:10.1007/s00442-004-1816-8

    Article  PubMed  Google Scholar 

  • Prieto I, Kikvidze Z, Pugnaire FI (2010) Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss. Plant Soil 329:447–456. doi:10.1007/s11104-009-0170-3

    Article  CAS  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841. doi:10.1111/j.1469-8137.2011.04039.x

    Article  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64. doi:10.1007/s00442-002-1078-2

    Article  PubMed  Google Scholar 

  • Rebelo AG (1996) Fynbos biome. In: Low AB, Rebelo AG (eds) Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, South Africa, pp 62–74

  • Rebelo AG, Boucher C, Helme N, Mucina L, Rutherford MC (2006) Fynbos biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa Lesotho and Swaziland. Strelitzia, vol. 19, pp 53–219

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489. doi:10.1007/BF00379405

    Article  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR et al (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156. doi:10.1007/s11104-011-0950-4

    Article  CAS  Google Scholar 

  • Rose TJ, Rengel Z, Ma Q et al (2008) Hydraulic lift by canola plants aids P and K uptake from dry topsoil. Aust J Agric Res 59:38–45. doi:10.1071/AR07146

    Article  CAS  Google Scholar 

  • Ryel RJ (2004) Hydraulic redistribution. In: Esser K, Lüttge U, Beyschlag W (eds) Prog Bot, vol. 65, pp 413–435. doi: 10.1007/978-3-642-18819-0_17

  • Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ (2002) Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia 130:173–184. doi:10.1007/s004420100794

    Google Scholar 

  • Ryel RJ, Leffler AJ, Peek MS, Ivans CY, Caldwell MM (2004) Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 141:335–345. doi:10.1007/s00442-003-1421-2

    Article  CAS  PubMed  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC (2002) Hydraulic redistribution of soil water by neotropical savanna trees. Tree Physiol 22:603–612. doi:10.1093/treephys/22.9.603

    Article  PubMed  Google Scholar 

  • Sekiya N, Yano K (2004) Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift?-Hydrogen stable isotope investigation of xylem waters. Field Crops Res 86:167–173. doi:10.1016/j.fcr.2003.08.007

    Article  Google Scholar 

  • Sekiya N, Araki H, Yano K (2011) Applying hydraulic lift in an agroecosystem: forage plants with shoots removed supply water to neighbouring vegetable crops. Plant Soil 341:39–50. doi:10.1007/s11104-010-0581-1

    Article  CAS  Google Scholar 

  • Shen Y, Zhang Y, Li S (2011) Nutrient effects on diurnal variation and magnitude of hydraulic lift in winter wheat. Agric Water Manag 98:1589–1594. doi:10.1016/j.agwat.2011.05.012

    Article  Google Scholar 

  • Smart DR, Carlisle E, Goebel M, Nuñez BA (2005) Transverse hydraulic redistribution by a grapevine. Plant Cell Environ 28:157–166. doi:10.1111/j.1365-3040.2004.01254.x

    Article  Google Scholar 

  • Snyder KA, James JJ, Richards JH, Donovan LA (2008) Does hydraulic lift or nighttime transpiration facilitate nitrogen acquisition? Plant Soil 306:159–166. doi:10.1007/s11104-008-9567-7

    Article  CAS  Google Scholar 

  • Sun G, Sun J, Zhou G (2009) Editorial: water and carbon dynamics in selected ecosystems in China. Agric For Meteorol 149:1789–1790

  • Tyree MT (2003) Matric potential. Encyclopaedia of water science. Marcel Dekker, Inc., New York, pp 615–617. http://www.nrs.fs.fed.us/pubs/jrnl/pristine/2003/ne_2003_tyree_007p.pdf

  • Wang X, Tang C, Guppy CN, Sale PWG (2009) The role of hydraulic lift and subsoil P placement in P uptake of cotton (Gossypium hirsutum L.). Plant Soil 325:263–275. doi:10.1007/s11104-009-9977-1

    Article  CAS  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173:753–765. doi:10.1111/j.1469-8137.2006.01963.x

    Article  PubMed  Google Scholar 

  • West AG, Patrickson SJ, Ehleringer JR (2006) Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun Mass Sp 20:1317–1321. doi:10.1002/rcm.2456

    Article  CAS  Google Scholar 

  • Wilkinson S, Bacon MA, Davies WJ (2007) Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA and xylem sap pH in maize. J Exp Bot 58:1705–1716. doi:10.1002/rcm.2456

    Article  CAS  PubMed  Google Scholar 

  • Witkowski ETF, Mitchell DT (1987) Variations in soil phosphorus in the fynbos biome. S Afr J Ecol 75:1159–1171. doi:10.2307/2260320

    Google Scholar 

  • Xianliang Y, Yunsheng C (1983) Soil Physics. Agriculture Press, Beijing, pp 1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Cramer.

Additional information

Communicated by Todd E Dawson.

The authors have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matimati, I., Anthony Verboom, G. & Cramer, M.D. Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?. Oecologia 175, 1129–1142 (2014). https://doi.org/10.1007/s00442-014-2987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2987-6

Keywords

Navigation