Skip to main content

Abstract

Biomolecules are the key factors for most of the biological processes. Immobilization is an impressive technique which is used to stabilize free biomolecules in solution. Immobilized biomolecules are more robust and more resistant to environmental changes. The main objective of the immobilization of biomolecules, namely., enzymes, is to enhance the economics of biocatalysis processes. Additionally, immobilization improves many properties of enzymes such as performance in organic solvents, pH tolerance, heat stability, and functional stability. More importantly, the heterogeneity of the immobilized biomolecule systems allows an easy recovery of both biomolecules and products, multiple reuse, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This chapter presents an overview of the recent literature reports for biomolecule immobilization on nanomaterial surfaces by various techniques. It also demonstrates the need for immobilization and different applications at various platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

AuNPs:

Gold nanoparticles

CLE:

Cross-linking enzymes

CLEAs:

Cross-linked enzyme aggregations

dsDNA:

Double-stranded deoxyribonucleic acid

EDC:

Ethyl (dimethylaminopropyl) carbodiimide

FRET:

Förster resonance energy transfer

HDAC:

Histone deacetylase

MCH:

6-mercato-1-hexanol

MNPs:

Magnetic nanoparticles

MWCNTs:

Multiwalled carbon nanotubes

NHS:

N-hydroxysuccinimide

NMs:

Nanomaterials

NPs:

Nanoparticles

PEG:

Polyethylene glycol

R & D:

Research and development

SI-ATRP:

Surface-initiated atom-transfer radical polymerization

ssDNA:

Single-stranded deoxyribonucleic acid

SWCNTs:

Single-walled carbon nanotubes

References

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523

    Article  PubMed  CAS  Google Scholar 

  • Ansari SA, Husain Q, Qayyum S, Azam A (2011) Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol 49(9):2107–2115

    Article  PubMed  CAS  Google Scholar 

  • Asal M, Özen Ö, Şahinler M, Baysal HT, Polatoğlu İ (2019) An overview of biomolecules, immobilization methods and support materials of biosensors. Sens Rev 39(3):377–386

    Article  Google Scholar 

  • Bahraman F, Alemzadeh I (2017) Optimization of l-asparaginase immobilization onto calcium alginate beads. Chem Eng Commun 204(2):216–220

    Article  CAS  Google Scholar 

  • Bahrami A, Vincent T, Garnier A, Larachi F, Boukouvalas J, Iliuta MC (2017) Noncovalent immobilization of optimized bacterial cytochrome P450 BM3 on functionalized magnetic nanoparticles. Ind Eng Chem Res 56(39):10981–10989

    Article  CAS  Google Scholar 

  • Benvidi A, Firouzabadi AD, Tezerjani MD, Moshtaghiun SM, Mazloum-Ardakani M, Ansarin A (2015) A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer. J Electroanal Chem 750:57–64

    Article  CAS  Google Scholar 

  • Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16(9):20774–20840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradbury DW, Azimi M, Diaz AJ, Pan AA, Falktoft CH, Wu BM, Kamei DT (2019) Automation of biomarker preconcentration, capture, and Nanozyme signal enhancement on paper-based devices. Anal Chem 91(18):12046–12054

    Article  PubMed  CAS  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31(11):1639–1650

    Article  PubMed  CAS  Google Scholar 

  • Broguiere N, Formica F, Barreto G, Zenobi-Wong M (2018) Sortase A as a cross-linking enzyme in tissue engineering. Acta Biomater 77:182–190

    Article  PubMed  CAS  Google Scholar 

  • Cacicedo ML, Manzo RM, Municoy S, Bonazza HL, Islan GA, Desimone M, Castro GR (2019) Immobilized enzymes and their applications. In: Advances in enzyme technology. Elsevier, Amsterdam, pp 169–200

    Chapter  Google Scholar 

  • Cao L, Langen LV, Sheldon RA (2003) Immobilised enzymes: carrier bound or carrier-free? Curr Opin Biotechnol 14(4):387–394

    Article  PubMed  CAS  Google Scholar 

  • Cesbron Y, Shaheen U, Free P, Lévy R (2015) TAT and HA2 facilitate cellular uptake of gold nanoparticles but do not lead to cytosolic localisation. PLoS One 10(4):e0121683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chapurina YE, Drozdov AS, Popov I, Vinogradov VV, Dudanov IP (2016) Streptokinase@ alumina nanoparticles as a promising thrombolytic colloid with prolonged action. J Mater Chem B 4(35):5921–5928

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari AA, Joshi S, Vig K, Sahu R, Dixit S, Baganizi R, Pillai S (2019) A three-dimensional human skin model to evaluate the inhibition of Staphylococcus aureus by antimicrobial peptide-functionalized silver carbon nanotubes. J Biomater Appl 33(7):924–934

    Article  PubMed  CAS  Google Scholar 

  • Chauhan S, Vohra A, Lakhanpal A, Gupta R (2015) Immobilization of commercial pectinase (Polygalacturonase) on celite and its application in juice clarification. J Food Process Preserv 39(6):2135–2141

    Article  CAS  Google Scholar 

  • Choi EJ, Ahn HW, Kim WJ (2015) Effect of α-acetolactate decarboxylase on diacetyl content of beer. Food Sci Biotechnol 24(4):1373–1380

    Article  CAS  Google Scholar 

  • Choi B, Rempala GA, Kim JK (2017) Beyond the Michaelis-Menten equation: accurate and efficient estimation of enzyme kinetic parameters. Sci Rep 7(1):17018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, de Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym 99:56–67

    Article  CAS  Google Scholar 

  • Compostella F, Pitirollo O, Silvestri A, Polito L (2017) Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 13(1):1008–1021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dar AI, Walia S, Acharya A (2019) Molecular recognition based rapid diagnosis of immunoglobulins via proteomic profiling of protein-nanoparticle complexes. Int J Biol Macromol 138:156–167

    Article  PubMed  CAS  Google Scholar 

  • Devi KS, Mahalakshmi VT, Ghosh AR, Kumar AS (2017) Unexpected co-immobilization of lactoferrin and methylene blue from milk solution on a Nafion/MWCNT modified electrode and application to hydrogen peroxide and lactoferrin biosensing. Electrochim Acta 244:26–37

    Article  CAS  Google Scholar 

  • Díaz-Hernández A, Gracida J, García-Almendárez BE, Regalado C, Núñez R, Amaro-Reyes A (2018) Characterization of magnetic nanoparticles coated with chitosan: a potential approach for enzyme immobilization. J Nanomater 9468574:11

    Google Scholar 

  • Drozd M, Pietrzak MD, Malinowska E (2018) SPRi-based biosensing platforms for detection of specific DNA sequences using thiolate and dithiocarbamate assemblies. Front Chem 6:173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebrahimi M, Raoof JB, Ojani R (2018) Sensitive electrochemical DNA-based biosensors for the determination of Ag+ and Hg 2+ ions and their application in analysis of amalgam filling. J Iran Chem Soc 15(8):1871–1880

    Article  CAS  Google Scholar 

  • Eghbali M, Farahbakhsh A, Rohani A, Pour AN (2015) Urea biosensor based on immobilization of urease on ZnO nanoparticles. Orient J Chem 31(2):1237–1242

    Article  CAS  Google Scholar 

  • Endo-Takahashi Y, Ooaku K, Ishida K, Suzuki R, Maruyama K, Negishi Y (2016) Preparation of angiopep-2 peptide-modified bubble liposomes for delivery to the brain. Biol Pharm Bull 39(6):977–983

    Article  PubMed  CAS  Google Scholar 

  • Fatarella E, Spinelli D, Ruzzante M, Pogni R (2014) Nylon 6 film and nanofiber carriers: preparation and laccase immobilization performance. J Mol Catal B Enzym 102:41–47

    Article  CAS  Google Scholar 

  • Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu Y, Zhao X, Zhang J, Li W (2014) DNA-based platinum nanozymes for peroxidase mimetics. J Phys Chem C 118(31):18116–18125

    Article  CAS  Google Scholar 

  • Fu Y, Han HH, Zhang J, He XP, Feringa BL, Tian H (2018) Photocontrolled fluorescence “double-check” bioimaging enabled by a glycoprobe–protein hybrid. J Am Chem Soc 140(28):8671–8674

    Article  PubMed  CAS  Google Scholar 

  • Ganesana M, Istarnboulie G, Marty J-L, Noguer T, Andreescu S (2011) Site-specific immobilization of a (His) 6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosens Bioelectron 30:43–48

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Liu M, Ma G, Wang Y, Zhao L, Yuan Q, Zhao Y (2015) Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano 9(11):10979–10990

    Article  PubMed  CAS  Google Scholar 

  • Garg S, De A, Mozumdar S (2015) pH-dependent immobilization of urease on glutathione-capped gold nanoparticles. J Biomed Mater Res Part A 103(5):1771–1783

    Article  CAS  Google Scholar 

  • Gebreyohannes AY, Mazzei R, Marei Abdelrahim MY, Vitola G, Porzio E, Manco G, Giorno L (2018) Phosphotriesterase-magnetic nanoparticle bioconjugates with improved enzyme activity in a biocatalytic membrane reactor. Bioconjug Chem 29(6):2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Ghannadi S, Abdizadeh H, Miroliaei M, Saboury AA (2019) Immobilization of alcohol dehydrogenase on titania nanoparticles to enhance enzyme stability and remove substrate inhibition in the reaction of formaldehyde to methanol. Ind Eng Chem Res 58(23):9844–9854

    Article  CAS  Google Scholar 

  • Guerrero S, Araya E, Fiedler JL, Arias JI, Adura C, Albericio F, Kogan MJ (2010) Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine 5(6):897–913

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silica–benefits and challenges. Chem Soc Rev 42(15):6277–6289

    Article  PubMed  CAS  Google Scholar 

  • Hassan RA, Heng LY, Tan LL (2019) Novel DNA biosensor for direct determination of carrageenan. Sci Rep 9(1):6379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Xie S, Yang X, Yuan R, Chai Y (2015) Electrochemical peptide biosensor based on in situ silver deposition for detection of prostate specific antigen. ACS Appl Mater Interfaces 7(24):13360–13366

    Article  PubMed  CAS  Google Scholar 

  • He J, Chen J, Hu G, Wang L, Zheng J, Zhan J, Wang Y (2018) Immobilization of an antimicrobial peptide on silicon surface with stable activity by click chemistry. J Mater Chem B 6(1):68–74

    Article  PubMed  CAS  Google Scholar 

  • Heid S, Unterweger H, Tietze R, Friedrich R, Weigel B, Cicha I, Lyer S (2017) Synthesis and characterization of tissue plasminogen activator—functionalized superparamagnetic iron oxide nanoparticles for targeted fibrin clot dissolution. Int J of Mol Sci 18(9):1837

    Article  CAS  Google Scholar 

  • Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Bio 6(4):185–205

    Article  Google Scholar 

  • Hood ED, Chorny M, Greineder CF, Alferiev IS, Levy RJ, Muzykantov VR (2014) Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials 35(11):3708–3715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosoyama K, Lazurko C, Muñoz M, McTiernan CD, Alarcon EI (2019) Peptide-based functional biomaterials for soft-tissue repair. Front Bioeng Biotechnol 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseini SM, Kim SM, Sayed M, Younesi H, Bahramifar N, Park JH, Pyo SH (2019) Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochem Eng J 143:141–150

    Article  CAS  Google Scholar 

  • Ingle AP, Rathod J, Pandit R, da Silva SS, Rai M (2017) Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose 24(12):5529–5540

    Article  CAS  Google Scholar 

  • Jia M, Li S, Zang L, Lu X, Zhang H (2018) Analysis of biomolecules based on the surface enhanced Raman spectroscopy. Nano 8(9):730

    Google Scholar 

  • Jiang Y, Du J, Tang H, Zhang X, Li W, Wang L, Yu D (2019a) Synthesis and application of nanomagnetic immobilized phospholipase C. J Chem 2019:5951793

    Google Scholar 

  • Jiang Y, Liu H, Wang L, Zhou L, Huang Z, Ma L, He Y, Shi L, Gao J (2019b) Virus-like organosilica nanoparticles for lipase immobilization: characterization and biocatalytic applications. Biochem Eng J 144:125–134

    Article  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2007) Enhanced transfection of tumor cells in vivo using “smart” pH-sensitive TAT-modified pegylated liposomes. J Drug Target 15(7–8):538–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khoshnevisan K, Poorakbar E, Baharifar H, Barkhi M (2019) Recent advances of cellulase immobilization onto magnetic nanoparticles: an update review. Magnetochemistry 5(2):36

    Article  CAS  Google Scholar 

  • Kim S, Cui ZK, Koo B, Zheng J, Aghaloo T, Lee M (2018a) Chitosan–lysozyme conjugates for enzyme-triggered hydrogel degradation in tissue engineering applications. ACS Appl Mater Interfaces 10(48):41138–41145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim K, Lee J, Moon B, Seo Y, Park C, Park M, Sung G (2018b) Fabrication of a urea biosensor for real-time dynamic fluid measurement. Sensors 18(8):2607

    Article  CAS  Google Scholar 

  • Kitamura T, Sakuma S, Shimosato M, Higashino H, Masaoka Y, Kataoka M, Koike S (2015) Specificity of lectin-immobilized fluorescent nanospheres for colorectal tumors in a mouse model which better resembles the clinical disease. Contrast Media Mol Imaging 10(2):135–143

    Article  PubMed  CAS  Google Scholar 

  • Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3(1):1

    Article  CAS  Google Scholar 

  • Kuswandi B, Irmawati T, Hidayat M, Ahmad M (2014) A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples. Sensors 14(2):2135–2149

    Article  PubMed  CAS  Google Scholar 

  • Labrou NE, Muharram MM (2016) Biochemical characterization and immobilization of Erwinia carotovora L-asparaginase in a microplate for high-throughput biosensing of L-asparagine. Enzyme Microb Technol 92:86–93

    Article  PubMed  CAS  Google Scholar 

  • Lawlor L, Yang XB (2019) Harnessing the HDAC–histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 11(2):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Goff A, Holzinger M (2018) Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells. Sustain Energy Fuels 2(12):2555–2566

    Article  Google Scholar 

  • Lee CK, Au-Duong AN (2018) Enzyme immobilization on nanoparticles: recent applications. Emerg Areas Bioeng 1:67–80

    Article  CAS  Google Scholar 

  • Li D, He Q, Cui Y, Duan L, Li J (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355(2):488–493

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H (2017) Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose 24(12):5541–5550

    Article  CAS  Google Scholar 

  • Mazlan SZ, Hanifah SA (2017) Effects of temperature and pH on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int J Poly Sci 2017:5657271

    Google Scholar 

  • Meneguetti GP, Santos JHPM, Obreque KMT, Barbosa CMV, Monteiro G, Farsky SHP, Pessoa-Junior A (2019) Novel site-specific PEGylated L-asparaginase. PLoS One 14(2):0211951

    Article  CAS  Google Scholar 

  • Miyawaki A, Niino Y (2015) Molecular spies for bioimaging—fluorescent protein-based probes. Mol Cell 58(4):632–643

    Article  PubMed  CAS  Google Scholar 

  • Mogharabi M, Nassiri-Koopaei N, Bozorgi-Koushalshahi M, Nafissi-Varcheh N, Bagherzadeh G, Faramarzi MA (2012) Immobilization of laccase in alginate-gelatin mixed gel and decolorization of synthetic dyes. Bioinorg Chem Appl 2012:823830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monajati M, Borandeh S, Hesami A, Mansouri D, Tamaddon AM (2018) Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: enzyme kinetics and stability studies. Chem Eng J 354:1153–1163

    Article  CAS  Google Scholar 

  • Nemzer LR, Schwartz A, Epstein AJ (2010) Enzyme entrapment in reprecipitated polyaniline nano- and microparticles. Macromolecules 43(9):4324–4330

    Article  CAS  Google Scholar 

  • Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2016) Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens Bioelectron 77:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Núñez-Villanueva D, Ciaccia M, Iadevaia G, Sanna E, Hunter CA (2019) Sequence information transfer using covalent template-directed synthesis. Chem Sci 10(20):5258–5266

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JM, Kim M, Park HS, Jang A, Min J, Kim YH (2013) Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. Int J Bio Macromol 54:37–43

    Article  CAS  Google Scholar 

  • Pasha KM, Anuradha P, Subbarao D (2013) Applications of pectinases in industrial sector. Int J Pure Appl Sci Technol 16(1):89

    Google Scholar 

  • Poon W, Zhang X, Bekah D, Teodoro JG, Nadeau JL (2015) Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles. Nanotechnology 26(28):285101

    Article  PubMed  CAS  Google Scholar 

  • Prabhulkar S, Tian H, Wang X, Zhu JJ, Li CZ (2012) Engineered proteins: redox properties and their applications. Antioxid Redox Signal 17(12):1796–1822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pundir CS (ed) (2015) Enzyme noparticles, vol 69. William Andrew Publishing, Boston

    Google Scholar 

  • Qie Y, Yuan H, Von Roemeling CA, Chen Y, Liu X, Shih KD, Kim BY (2016) Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep 6:26269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rafiee-Pour HA, Nejadhosseinian M, Firouzi M, Masoum S (2019) Catalase immobilization onto magnetic multi-walled carbon nanotubes: optimization of crucial parameters using response surface methodology. New J Chem 43(2):593–600

    Article  CAS  Google Scholar 

  • Raveendran S, Parameswaran B, Beevi Ummalyma S, Abraham A, Kuruvilla Mathew A, Madhavan A, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regalado C, García-Almendárez BE, Duarte-Vázquez MA (2004) Biotechnological applications of peroxidases. Phytochem Rev 3(1–2):243–256

    Article  CAS  Google Scholar 

  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42(15):6290–6307

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, Hamad-Schifferli K (2018) Physical properties of biomolecules at the nanomaterial interface. J Phys Chem B 122(11):2827–2840

    Article  PubMed  CAS  Google Scholar 

  • Sahare P, Ayala M, Vazquez-Duhalt R, Agrawal V (2014) Immobilization of peroxidase enzyme onto the porous silicon structure for enhancing its activity and stability. Nanoscale Res Lett 9(1):409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuma S, Yano T, Masaoka Y, Kataoka M, Hiwatari KI, Tachikawa H, Tang L (2009) In vitro/in vivo biorecognition of lectin-immobilized fluorescent nanospheres for human colorectal cancer cells. J Control Release 134(1):2–10

    Article  PubMed  CAS  Google Scholar 

  • Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Wurm FR (2016) Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nat Nanotechnol 11(4):372

    Article  PubMed  CAS  Google Scholar 

  • Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42(15):6250–6261

    Article  PubMed  CAS  Google Scholar 

  • Sharma B, Mandani S, Sarma TK (2014) Enzymes as bionanoreactors: glucose oxidase for the synthesis of catalytic Au nanoparticles and Au nanoparticle–polyaniline nanocomposites. J Mater Chem B 2(26):4072–4079

    Article  PubMed  CAS  Google Scholar 

  • Siepenkoetter T, Salaj-Kosla U, Xiao X, Conghaile PÓ, Pita M, Ludwig R, Magner E (2017) Immobilization of redox enzymes on nanoporous gold electrodes: applications in biofuel cells. Chem Plus Chem 82(4):553–560

    PubMed  CAS  Google Scholar 

  • Sirbu T (2011) The searching of active catalase producers among the microscopic fungi. An Univ Oradea Fasc Biol 18(2):164–167

    Google Scholar 

  • Sivaraman K, Muthukumar K, Shanthi C (2019) A potential bioactive peptide candidate for biomaterial and tissue engineering applications. Life Sci 226:140–148

    Article  PubMed  CAS  Google Scholar 

  • Skogs M, Stadler C, Schutten R, Hjelmare M, Gnann C, Björk L, Lundberg E (2016) Antibody validation in bioimaging applications based on endogenous expression of tagged proteins. J Proteome Res 16(1):147–155

    Article  PubMed  CAS  Google Scholar 

  • Souza CJ, Garcia-Rojas EE, Favaro-Trindade CS (2018) Lactase (β-galactosidase) immobilization by complex formation: impact of biopolymers on enzyme activity. Food Hydrocoll 83:88–96

    Article  CAS  Google Scholar 

  • Spicer CD, Jumeaux C, Gupta B, Stevens MM (2018) Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 47(10):3574–3620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sur A, Pradhan B, Banerjee A, Aich P (2015) Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PLoS One 10(4):e0123905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szałapata K, Osińska-Jaroszuk M, Bryjak J, Jaszek M, Jarosz-Wilkołazka A (2016) Novel application of porous and cellular materials for covalent immobilization of pepsin. Braz J Chem Eng 33(2):251–260

    Article  CAS  Google Scholar 

  • Talebi M, Vaezifar S, Jafary F, Fazilati M, Motamedi S (2016) Stability improvement of immobilized α-amylase using nano pore zeolite. Iran J Biotechnol 14(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  • Thandavan K, Gandhi S, Sethuraman S, Rayappa JBB, Krishnan UM (2013) Development of electrochemical biosensor with nano-interface for xanthine sensing–a novel approach for fish freshness estimation. Food Chem 139(1-4):963–969

    Article  PubMed  CAS  Google Scholar 

  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M (2011) Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417(1):73–79

    Article  PubMed  CAS  Google Scholar 

  • Uygun DA, Öztürk N, Akgöl S, Denizli A (2012) Novel magnetic nanoparticles for the hydrolysis of starch with Bacillus licheniformis α-amylase. J Appl Poly Sci 123(5):2574–2581

    Article  CAS  Google Scholar 

  • Venditti I, Palocci C, Chronopoulou L, Fratoddi I, Fontana L, Diociaiuti M, Russo MV (2015) Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: activity and stability investigations. Colloids Surf B Biointerfaces 131:93–101

    Article  PubMed  CAS  Google Scholar 

  • Walia S, Shukla AK, Sharma C, Acharya A (2019) Engineered bright blue-and red-emitting carbon dots facilitate synchronous imaging and inhibition of bacterial and cancer cell progression via 1O2-mediated DNA damage under photoirradiation. ACS Biomater Sci Eng 5(4):1987–2000

    Article  CAS  Google Scholar 

  • Wang Q, Zhang B, Lin X, Weng W (2011) Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan–mutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker. Sens Actuators B Chem 156(2):599–605

    Article  CAS  Google Scholar 

  • Wang X, Matei E, Deng L, Koharudin L, Gronenborn AM, Ramström O, Yan M (2013a) Sensing lectin–glycan interactions using lectin super-microarrays and glycans labeled with dye-doped silica nanoparticles. Biosens Bioelectron 47:258–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Su P, Huang J, Wu J, Yang Y (2013b) Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays. J Mater Chem B 1(12):1749–1754

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Liao X, Ding Y, Gao F, Wang Q (2014) DNA biosensor based on a glassy carbon electrode modified with electropolymerized Eriochrome Black T. Microchim Acta 181(1-2):155–162

    Article  CAS  Google Scholar 

  • Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW (2015a) Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int J Bio Macromol 75:44–50

    Article  CAS  Google Scholar 

  • Wang K, Lei Y, Zhong GX, Zheng YJ, Sun ZL, Peng HP, Lin XH (2015b) Dual-probe electrochemical DNA biosensor based on the “Y” junction structure and restriction endonuclease assisted cyclic enzymatic amplification for detection of double-strand DNA of PML/RARα related fusion gene. Biosens Bioelectron 71:463–469

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  PubMed  CAS  Google Scholar 

  • Xu B, Zheng D, Qiu W, Gao F, Jiang S, Wang Q (2015) An ultrasensitive DNA biosensor based on covalent immobilization of probe DNA on fern leaf-like α- Fe2O3 and chitosan Hybrid film using terephthalaldehyde as arm-linker. Biosens Bioelectron 72:175–181

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Li X, Yan S, Wang M, Liu P, Dong Y, Zhang C (2015) Single-walled carbon nanotubes–carboxyl-functionalized graphene oxide-based electrochemical DNA biosensor for thermolabile hemolysin gene detection. Anal Methods 7(12):5303–5310

    Article  CAS  Google Scholar 

  • Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10(5):4558–4576

    Article  PubMed  Google Scholar 

  • Yu CY, Huang LY, Kuan I, Lee SL (2013) Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles. Int J Mol Sci 14(12):24074–24086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng C, Lu N, Wen Y, Liu G, Zhang R, Zhang J, Zhang M (2018) Engineering nanozymes using DNA for catalytic regulation. ACS Appl Mater Interfaces 11(2):1790–1799

    Article  CAS  Google Scholar 

  • Zhang Y, Ge J, Liu Z (2015) Enhanced activity of immobilized or chemically modified enzymes. ACS Catal 5(8):4503–4513

    Article  CAS  Google Scholar 

  • Zhang L, Wang B, Wang S, Zhang W (2018) Recyclable trypsin immobilized magnetic nanoparticles based on hydrophilic polyethylenimine modification and the proteolytic characteristics. Anal Methods 10(4):459–466

    Article  CAS  Google Scholar 

  • Zhang L, Qi Z, Zou Y, Zhang J, Xia W, Zhang R, Li J (2019) Engineering DNA–nanozyme interfaces for rapid detection of dental Bacteria. ACS Appl Mater Interfaces 11(34):30640–30647

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Wang Q, Dong J, Xian M, Yu J, Yin H, Wang J (2017) Enzyme-inorganic nanoflowers/alginate microbeads: an enzyme immobilization system and its potential application. Process Biochem 57:87–94

    Article  CAS  Google Scholar 

  • Zheng Q, Wu H, Shen Z, Gao W, Yu Y, Ma Y, Ding K (2015) An electrochemical DNA sensor based on polyaniline/graphene: high sensitivity to DNA sequences in a wide range. Analyst 140(19):6660–6670

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Li H, Yang H, Cheng H, Lai G (2017) Immobilization of glucose oxidase on a carbon nanotubes/dendrimer-ferrocene modified electrode for reagent less glucose biosensing. J Nanosci Nanotech 17(1):212–216

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Director, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology (CSIR-IHBT) for his constant support and encouragement. AA acknowledges financial assistance in the form of project grant MLP-0201 from CSIR and GAP-0214 (EMR/2016/003027) from Department of Science & Technology (DST), Government of India. AKS and MV acknowledge CSIR-GATE, and DST, Government of India for their respective fellowships. The CSIR-IHBT communication number of this manuscript is 4504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, A.K., Verma, M., Acharya, A. (2020). Biomolecules Immobilized Nanomaterials and Their Biological Applications. In: Acharya, A. (eds) Nanomaterial - Based Biomedical Applications in Molecular Imaging, Diagnostics and Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4280-0_5

Download citation

Publish with us

Policies and ethics