Skip to main content

Technological Advances in Agronomic Practices of Seed Processing, Storage, and Pest Management: An Update

  • Chapter
  • First Online:
Advances in Seed Production and Management

Abstract

The seed is a rudimentary embryonic form of a plant present in a capsulated form that has an ability to grow up into a mature plant. Also the seed is the basic unit of production in agriculture, and therefore, seed health is an important factor in agriculture. Moreover, seeds with superior potency make contributions almost to 30% of the excessive harvest. However, factors such as seed characteristics, pests, microbial contamination, geographical locations, moisture, temperature, and storage have a direct influence on seed viability, germinations, and quality. Therefore, it is important to monitor the series of the process starting from seed collection to seed testing and storage. In the absence of high-quality seeds, farmers continue to use their own seeds. Ideally, this retained produce cannot be substituted for high-quality seeds because it lacks genetic vigour and has poor germination. Thus, the availability of certified seeds of right varieties has become crucial. In this chapter, we elaborate about current agronomic practices, technological advancements in seed processing, treatment, qualitative parameters necessary for a healthy seed, seed storage practices, and testing parameters for certified seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abay F, Waters-Bayer A, Bjørnstad Å (2008) Farmer’s seed management and innovation in varietal selection: implications for barley breeding in Tigray, Northern Ethiopia. J Hum Environ 37(4):312–321

    Article  Google Scholar 

  • Akitsu T, Ohkawa H, Tsuji M, Kimura H, Kogoma M (2005) Plasma sterilization using glow discharge at atmospheric pressure. Surf Coat Technol 193(1–3):29–34

    Article  CAS  Google Scholar 

  • Aladjadjiyan A (2002) Study of influence of magnetic field on some biological characteristics of Zea mays. J Cent Eur Agric 3:89–94

    Google Scholar 

  • Ambika S, Manonmani V, Somasundaram G (2014) Review on effect of seed size on seedling vigour and seed yield. Res J Seed Sci 7(2):31–38

    Article  Google Scholar 

  • Andersen AM, Leach CM (2010) Testing seeds for seedborne organisms. U.S. Dept. of Agriculture, Washington, DC

    Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Atanda AS, Pessu OP, Agoda S, Isong IU, Ikotun I (2011) The concepts and problems of postharvest food losses in perishable crops. Rev Afr J Food Sci 5:603–613

    Google Scholar 

  • Babiker AZ (2004) Evaluation of alternative drying methods and storage techniques on the storability of sorghum (Sorghum bicolor) seeds in the genebank. Dissertation, University of Khartoum, Sudan

    Google Scholar 

  • Balbinot E, Lopes HM (2006) Efeitos do condicionamento fisiológico e da secagem na germinação e no vigor de sementes de cenoura. Rev bras sementes 28:1–8

    Article  Google Scholar 

  • Barton LV (1941) Relation of certain air temperatures and humidities to the viability of seeds. Boyce Thompson Inst Contrib 12(2):85–102

    Google Scholar 

  • Barzman M, Bàrberi P, Birch AN, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR (2015) Eight principles of integrated pest management. Agron Sustain Dev 35(4):1199–1215

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Article  Google Scholar 

  • Bautista-Baños S, Hernandez-Lauzardo AN, Velazquez-Del Valle MG, Hernández-López M, Barka EA, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. J Crop Prot 25(2):108–118

    Article  CAS  Google Scholar 

  • Begum MF, Rahman MA, Alam MF (2010) Biological control of Alternaria fruit rot of chili by Trichoderma species under field conditions. Mycobiology 38(2):113–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Berjak P, Dumet D (1996) Cryopreservation of seeds and isolated embryonic axes of neem (Azadirachta indica). Cryo-Letters

    Google Scholar 

  • Bishaw Z, Struik PC, Van Gastel AJ (2013) Farmer’s seed sources and seed quality: seed health. Int J Plant Prod 7:637–657

    Google Scholar 

  • Boothumjinda S, Exell RH, Rongtawng S, Kaewnikom W (1983) Field tests of solar rice dryers in Thailand. In: Proc ISES Solar World Forum. Perth, Australia (Parkville ISES). Pergamon Press, Oxford, pp 1258–1263

    Google Scholar 

  • Bormashenko E, Grynyov R (2012) Plasma treatment induced wetting transitions on biological tissue (pigeon feathers). Coll Surf B 92:367–371

    Article  CAS  Google Scholar 

  • Boxall RA, Brice JR, Taylor SJ, Bancroft RD, Golob P, Farrell G, Orchard JE (2002) Crop post-harvest, science and technology. Volume 1. Principles and practice. Blackwell Science Ltd, Oxford, pp 141–204

    Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21:1105

    Google Scholar 

  • Brocklehurst PA, Dearman J, Drew RKL (1984) Effects of osmotic priming on seed germination and seedling growth in leek. Sci Hortic 24:201–210

    Article  Google Scholar 

  • Castro BA (1998) Evaluation of Gaucho seed treatment and soil insecticides for management of the red imported fire ant on seedling grain sorghum during 1994-1996

    Google Scholar 

  • Cheah KSE, Osborne DJ (1978) DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature 272:593–599

    Article  CAS  PubMed  Google Scholar 

  • Chin HF, Roberts EH (1980) Recalcitrant crop seeds. Tropical Press, Kuala Lumpur

    Google Scholar 

  • Chowdhury ME, Lim H, Bae H (2014) Update on the effects of sound wave on plants. Res Plant Dis 20(1):1–7

    Article  CAS  Google Scholar 

  • Copeland LO, McDonald MB (1995) Principles of seed science and technology. Chapman and Hall, New York, NY, p 409

    Google Scholar 

  • Copeland LO, McDonald MB (1999) Seed longevity and deterioration. In: Principles of seed science and technology. Springer, Boston, MA, pp 181–220

    Chapter  Google Scholar 

  • Copeland LO, McDonald MB (2001) Seed germination. In: Principles of seed science and technology. Springer, Boston, MA, pp 72–123

    Chapter  Google Scholar 

  • Dahiya BS, Deswal DP, Singh RK (2005) Pulses seed production and storage. In: Pulses. Agrotech Publishing Academy, Udaipur

    Google Scholar 

  • Danesh YR, Ghiyasi M, Tajbakhsh M, Najafi S, Amirnia R (2014) Seed health management strategies in organic farming. In: Turkey 5th Seed Congress with International Participation

    Google Scholar 

  • Dhayal M, Lee SY, Park SU (2006) Using low-pressure plasma for Charthamus tinctorium L. seed surface modification. Vacuum 80:499–506

    Article  CAS  Google Scholar 

  • Dillman AC, Toole EH (1937) Effect of age, condition, and temperature on the germination of flaxseed. Am Soc Agron J 29:23–29

    Article  Google Scholar 

  • Do Rego MM, Araujo ER, Do Rego ER, De Castro JP (2009) In vitro seed germination of mandacaru (Cereus jamacaru DC.). Rev Caatinga 22(4):34–38

    Google Scholar 

  • El-Mohamedy RS, Alla MA (2013) Bio-priming seed treatment for biological control of soil-borne fungi causing root rot of green bean (Phaseolus vulgaris L.). J Agric Technol 9:589–599

    Google Scholar 

  • Filatova I, Azharonok V, Lushkevich V, Zhukovsky A, Gadzhieva G, Spasic K, Zivkovic S, Puac N, Lazovic S, Malovic G, Petrovic ZL (2013) Plasma seeds treatment as a promising technique for seed germination improvement. In: Proceeding of the 31st International Conference on Phenomena in Ionized Gases

    Google Scholar 

  • Golob P, Farrell G, Orchard JE (eds) (2002) Crop post-harvest: science and technology. Blackwell Science

    Google Scholar 

  • Goussous SJ, Samarah NH, Alqudah AM, Othman MO (2010) Enhancing seed germination of four crop species using an ultrasonic technique. Exp Agric 46(2):231–242

    Article  Google Scholar 

  • Gray D (1981) Fluid drilling of vegetable seeds. Hortic Rev 3:1–27

    CAS  Google Scholar 

  • Haferkamp ME, Smith L, Nilan RA (1953) Studies on aged seeds. I. Relation of age of seed to germination and longevity. Agron J 45(9):434–437

    Article  Google Scholar 

  • Harrington JF (1972) Seed storage and longevity. In: Kozlowski TT (ed) Seed biology, vol 3. Academic Press, New York, NY; London, pp 145–245

    Google Scholar 

  • Harrington JF, Thompson JJ (1952) Effect of variety and area of production on subsequent germination of lettuce seed at high temperatures. Proc Am Soc Hort Sci 59:445–450

    Google Scholar 

  • Hartmann HT, Kester DE (1975) Plant propagation: principles and practices. Prentice-Hall, Inc, Englewood Cliffs, NJ

    Google Scholar 

  • Harty RL (1980) Seed processing, storage, and quality control. Trop Grassl 14(3):169

    Google Scholar 

  • Hassanien RH, Hou TZ, Li YF, Li BM (2014) Advances in the effects of sound waves on plants. J Integr Agric 13(2):335–348

    Article  Google Scholar 

  • Hayashi N, Nakahigashi A, Goto M, Kitazaki S, Koga K, Shiratani M (2011) Redox characteristics of thiol compounds using radicals produced by water vapor radio frequency discharge. Japanese J Appl Phys 50(8S1):08JF04

    Article  Google Scholar 

  • Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67(3):490–497

    Article  CAS  Google Scholar 

  • Heydecker W (1972) Vigor. In: Roberts EH (ed) Viability of seeds. Syracuse University Press, Syracuse, NY, pp 209–252

    Chapter  Google Scholar 

  • Heydecker W, Coolbear P (1977) Seed treatments for improved performance survey and attempted prognosis. Seed Sci Technol 5:353

    CAS  Google Scholar 

  • Horne PA, Page J (2008) Integrated pest management for crops and pastures. Csiro Publishing, Clayton, VIC

    Book  Google Scholar 

  • Huffaker CB (1984) Natural control of insect populations. Ecol Entomol:359–398

    Google Scholar 

  • International Seed Testing Association (1985) International rules for seed testing Rules 1985. Seed Sci Technol 13(2):299–513

    Google Scholar 

  • Janmohammadi M, Dezfuli PM, Sharifzadeh F (2008) Seed invigoration techniques to improve germination and early growth of the inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol 34(3-4):215–226

    Google Scholar 

  • Jiayun T, Rui HE, Xiaoli Z, Ruoting Z, Weiwen C, Size Y (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol 16(3):260

    Article  CAS  Google Scholar 

  • Justice OL, Bass LN (1978) Principles and practices of seed storage. US Government Printing Office, Washington, DC

    Google Scholar 

  • Kahrl F, Yunju L, Roland-Holst D, Jianchu X, Zilberman D (2010) Toward sustainable use of nitrogen fertilizers in China. ARE Update 14(2):5–7

    Google Scholar 

  • Karlen DL, Andrews SS, Weinhold BJ, Doran JW (2003) Soil quality: Humankind’s foundation for survival a research editorial by conservation professionals. J Soil Water Conserv 58(4):171–179

    Google Scholar 

  • Khan AA (1992) Preplant physiological seed conditioning. Hortic Rev 13(1):131–181

    Google Scholar 

  • Khan AA, Tao KL, Knypl JS, Borkowska B, Powell LE (1977) Osmotic conditioning of seeds: physiological and biochemical changes. In: Symposium on seed problems in horticulture, vol 83, pp 267–278

    Google Scholar 

  • Kiaya V (2014) Post-harvest losses and strategies to reduce them. Technical paper on postharvest losses. Action Contre la Faim (ACF), Paris

    Google Scholar 

  • Kiong AL, Lai AG, Hussein S, Harun AR (2008) Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. Am Eur J Sustain Agric 2(2):135–149

    Google Scholar 

  • Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W et al (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78:5077–5082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubik KK, Eastin JA, Eastin JD, Eskridge KM (1988) Solid matrix priming of tomato and pepper. In: Proc. Intl. Conf. Stand Establishment Hort. Crops, Lancaster, PA, pp 86–96

    Google Scholar 

  • Kumar D, Mishra DK (2014) Variability in permeability and integrity of cell membrane and depletion of food reserves in neem (Azadirachta indica) seeds from trees of different age classes. J For Res 25:147–153

    Article  CAS  Google Scholar 

  • Langan TD, Pendleton JW, Oplinger ES (1986) Peroxide coated seed emergence in water-saturated soil. Agron J 78(5):769–772

    Article  CAS  Google Scholar 

  • Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Wang Q, Karagić Đ, Liu X, Cui J, Gui J, Gu M, Gao W (2016) Effects of ultrasonication on increased germination and improved seedling growth of aged grass seeds of tall fescue and Russian wild rye. Sci Rep 6:22403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay DB, Tonkin JH (1967) Investigations in crop seed longevity. I. An analysis of long-term experiments, with special reference to the influence of species, cultivar, provenance and season. J Nat Inst Agric Bot 11:209–225

    Google Scholar 

  • Malik AU, Ahmad M, Hussain I (2009) Effect of seed rates sown on different dates on wheat under agro-ecological conditions of Dera Ghazi Khan. JAPS, J Anim Plant Sci 19(3):126–129

    Google Scholar 

  • Marcar N, Crawford D, Leppert P, Jovanovic T, Floyd R, Farrow R (1995) Trees for salt and: a guide to selecting native species for Australia. Csiro Publishing, Clayton, VIC

    Book  Google Scholar 

  • Martínez G, Reyes G, Falcón R, Núñez V (2015) Effect of seed treatment with chitosan on the growth of rice (Oryza sativa L.) seedlings cv. INCA LP-5 in the saline medium. Cultivos Tropicales 36(1):143–150

    Google Scholar 

  • Mathur SB, Jorgensen J (1998) Different types of damages in seeds caused by seed borne fungi. In: Proceedings of CTA seminar, 20–25 June 1998, Copenhagen, Denmark

    Google Scholar 

  • Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113(2):125–129

    Article  Google Scholar 

  • McCormack JH (2004) Seed processing and storage: principles and practices of seed harvesting, processing, and storage: an organic seed production manual for seed growers in the Mid-Atlantic and Southern US

    Google Scholar 

  • Melki M, Sallami D (2008) Studies the effects of a low dose of gamma rays on the behavior of chickpea under various conditions. Pak J Biol Sci 19:2326–2330

    Article  Google Scholar 

  • Mohammed M (2014) Manual on post-harvest management strategies to reduce losses of perishable crops. In: UWI/CTA/NAMDEVCO Workshop on Strategies to Reduce Postharvesting Techniques and Maintenance of Seed Quality harvest Losses in Perishable Commodities at NAMDEVCO Conference Facility. Piarco, Trinidad

    Google Scholar 

  • de Moraes CF, Suzin M, Nienow AA, Grando MF, Mantovani N, Calvete EO, Donida BT (2010) In vitro artichoke seed germination. Hortic Bras 28(1):64–69

    Article  Google Scholar 

  • Morejon LP, Castro Palacio JC, Velazquez Abad L, Govea AP (2007) Stimulation of Pinus tropicalis M. seeds by magnetically treated water. Int Agrophys 21(2):173

    Google Scholar 

  • Murungu FS, Chiduza C, Nyamugafata P, Clark LJ, Whalley WR, Finch-Savage WE (2004) Effects of ‘on-farm seed priming’ on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crop Res 89(1):49–57

    Article  Google Scholar 

  • Nalepa S, Hahn T (2013) The value of neonicotinoid seed treatment in the European Union: a socio-economic, technological and environmental review. Humboldt Forum for Food and Agriculture (HFFA), Berlin. 96 p

    Google Scholar 

  • Ni BR (1997) Seed coating, film coating and pelleting. In: Seed industry and agricultural development. Chinese Association of Agricultural Sciences. DOA, Ministry of Agriculture. China Agriculture Press, Beijing, pp 737–747

    Google Scholar 

  • Nyland RD (1996) Silviculture concepts and applications. McGraw-Hill, Inc, New York, NY

    Google Scholar 

  • Ollerenshaw JH (1985) Influence of waterlogging on the emergence and growth of Lolium perenne L. shoots from seed coated with calcium peroxide. Plant Soil 85(1):131–141

    Article  CAS  Google Scholar 

  • Oyebanji OB, Nweke O, Odebunmi O, Galadima NB, Idris MS, Nnodi UN, Afolabi AS, Ogbadu GH (2009) Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. Afr J Biotechnol 8(20):5395

    CAS  Google Scholar 

  • Pandey P, Verma MK, De N (2018) Chitosan in agricultural context–a review. Bull Environ Pharmacol Life Sci 7(4):87–96

    Google Scholar 

  • Pollock BM, Toole VK (1961) After ripening, rest period, and dormancy. USDA Yearbook of Agriculture. GPO, Washington, DC, p 106

    Google Scholar 

  • Porter RH, Durrell M, Romm HJ (1947) The use of 2, 3, 5-triphenyl-tetrazolium chloride as a measure of seed germinability. Plant Physiol 22(2):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts SE, Lumpkin TA (1997) Cryopreservation of Wasabia spp. seeds. Cryo-Letters 18:185

    Google Scholar 

  • Pratap V, Sharma YK (2010) Impact of osmotic stress on seed germination and seedling growth in black gram (Phaseolus mungo). J Environ Biol 31(5):721

    CAS  PubMed  Google Scholar 

  • Pritchard HW, Nadarajan J (2008) Cryopreservation of orthodox (desiccation-tolerant) seeds. In: Plant cryopreservation: a practical guide. Springer, New York, NY, pp 485–501

    Chapter  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134(4):1598–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman HU, Basra SM, Farooq M (2011) Field appraisal of seed priming to improve the growth, yield, and quality of direct-seeded rice. Turk J Agric For 35(4):357–365

    Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18(1):40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risca IM, Fartais L, Stiuca P (2007) Ultrasound effects contributions on the Norway spruce seeds germination (Picea abies (L.) Karsten). Gen Biol Mol 8:87–88

    Google Scholar 

  • Roberts HA, Feast PM (1972) Fate of seeds of some annual weeds in different depths of cultivated and undisturbed soil. Weed Res 12(4):316–324

    Article  Google Scholar 

  • Rogozhin VV, Kuriliuk TT, Filippova NP (2000) Change in the reaction of the antioxidant system of wheat sprouts after UV-irradiation of seeds. Biofizika 45(4):730–736

    CAS  PubMed  Google Scholar 

  • Sacilik K (2007) Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J Food Eng 79(1):23–30

    Article  Google Scholar 

  • Schmidt L (2000) Guide to the handling of tropical and subtropical forest seed. Danida Forest Seed Centre, Humlebaek

    Google Scholar 

  • Scott JM (1989) Seed coatings and treatments and their effects on plant establishment. Adv Agron 42:43–83

    Article  CAS  Google Scholar 

  • Sera B, Spatenka P, Sery M, Vrchotová N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38(10):2963–2968

    Article  Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture-a review. J Appl Nat Sci 7(1):521–539

    Article  Google Scholar 

  • Sikhao P, Taylor AG, Marino ET, Catranis CM, Siri B (2015) Development of seed agglomeration technology using lettuce and tomato as model vegetable crop seeds. Sci Hortic 184:85–92

    Article  Google Scholar 

  • Smith AE, Miller R (1987) Seed pellets for improved seed distribution of small-seeded forage crops. J Seed Technol 11:42–51

    Google Scholar 

  • Smith DM, Larson BC, Kelty MJ, Ashton PM, Bowersox TW (1997) The practice of silviculture: applied forest ecology. John Wiley & Sons, New York, NY

    Google Scholar 

  • Sosnin EA, Stoffels E, Erofeev MV, Kieft IE, Kunts SE (2004) The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach. IEEE Trans Plasma Sci 32(4):1544–1550

    Article  Google Scholar 

  • Sudhakar N, Murugesan K (2011) Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against Cucumber mosaic virus by UV-B irradiation on calli. Arch Phytopathol Plant Protect 44(5):460–474

    Article  CAS  Google Scholar 

  • Sudhakar N, Nagendra-Prasad D, Mohan N, Hill B, Gunasekaran M, Murugesan K (2011) Assessing the influence of ozone in tomato seed dormancy alleviation. Am J Plant Sci 2(3):443

    Article  CAS  Google Scholar 

  • Tatipata A (2009) Effect of seed moisture content packaging and storage period on mitochondria inner membrane of soybean seed. J Agric Technol 5(1):51–64

    Google Scholar 

  • Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Annu Rev Phytopathol 28(1):321–339

    Article  Google Scholar 

  • Taylor AG, Klein DE, Whitlow TH (1988) SMP: solid matrix priming of seeds. Sci Hortic 37(1-2):1–1

    Article  Google Scholar 

  • Thanos CA, Georghiou K, Passam HC (1989) Osmoconditioning and ageing of pepper seeds during storage. Ann Bot 63(1):65–70

    Article  Google Scholar 

  • Thomas JMG, Boote KJ, Allen LH, Gallo-Meagher DJM (2003) Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci 43:1548–1557

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1998) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:34993508

    Google Scholar 

  • Tripp R, Louwaars N, van der Burg WJ, Virk DS, Witcombe JR (1997) Alternatives for seed regulatory reform: an analysis of variety testing, variety regulation and seed quality control. Agricultural Research and Extension Network. Network Paper No. 69. Overseas Development Institute (ODI), London

    Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A (2012) Understanding the molecular pathways associated with seed vigour. Plant Physiol Biochem 60:196–206

    Article  CAS  PubMed  Google Scholar 

  • Vibhuti CS, Bargali K, Bargali SS (2015) Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian J Agric Sci 85(1):102–108

    Google Scholar 

  • Volin JC, Denes FS, Young RA, Park SM (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40(6):1706–1718

    Article  CAS  Google Scholar 

  • Warghane RS, Rajkumar E (2017) Review on design and optimization of thresher in crop cutting machine. Int J MechEng Technol 8(11):1020–1028

    Google Scholar 

  • Warham EJ, Sutton BC, Butler LD (1996) Seed testing of maize and wheat: a laboratory guide. CIMMYT, Mexico

    Google Scholar 

  • Wharton MJ (1955) The use of tetrazolium test for determining the viability of seeds of the genus Brassica. Proc Int Seed Test Assoc 20:81–88

    Google Scholar 

  • Wi SG, Chung BY, Kim JS, Kim JH, Baek MH, Lee JW, Kim YS (2007) Effects of gamma irradiation on morphological changes and biological responses in plants. Micron 38(6):553–564

    Article  CAS  PubMed  Google Scholar 

  • Willan RL (1985) FAO Forestry Paper 20/2-A guide to forest seed handling: with special reference to the tropics. Food and Agricultural Organisation, Rome

    Google Scholar 

  • Yadav RDS (2018) Influence of seed encrustation on germination, establishment band seed yield in rapeseed mustard. Int J Curr Microbiol App Sci Spec Issue 7:3539–3541

    Google Scholar 

  • Yilmaz A, Boydak E (2006) The effects of cobalt-60 applications on yield components of cotton (Gossypium barbadense L.). Pak J Biol Sci 9:2761–2769

    Article  Google Scholar 

  • Yousaf Z, Saleh N, Ramazan A, Aftab A (2016) Postharvesting techniques and maintenance of seed quality. In: New challenges in seed biology: basic and translational research driving seed technology. InTech Open, Rijeka, p 113

    Google Scholar 

  • Zhou Z, Huang Y, Yang S, Chen W (2011) Introduction of a new atmospheric pressure plasma device and application on tomato seeds. Agric Sci 2(1):23–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudhakar, N., Karthikeyan, G., RajhaViknesh, M., Saranya, A.S., Shurya, R. (2020). Technological Advances in Agronomic Practices of Seed Processing, Storage, and Pest Management: An Update. In: Tiwari, A.K. (eds) Advances in Seed Production and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-4198-8_17

Download citation

Publish with us

Policies and ethics