Skip to main content

Lignans in Diets

  • Reference work entry
  • First Online:
Handbook of Dietary Phytochemicals

Abstract

Lignans are a large group of natural products consisting of dimers of phenyl propane units. They are found in diverse forms distributed in a variety of plants. Owing to their biological activities ranging from antioxidant, antitumor, antiestrogenic, antivirus, anti-inflammatory to antiviral properties, they have been used for a long time both in ethnic and in conventional medicine. In particular, it may prevent hormone-dependent diseases, such as breast cancer, prostate cancer, and benign prostatic hyperplasia. However, many important scientific problems have not been constrained. This chapter has systematically reviewed the bioactive constituent, classification, distribution, bioavailability, metabolism, bioactivities, human health, application, and safety aspects of lignans. And lastly, a prospective of future studies on lignans is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albertson AKF, Lumb J-P (2015) A bio-inspired total synthesis of tetrahydrofuran lignans. Angew Chem Int Ed Engl 54(7):2204–2208

    Article  CAS  PubMed  Google Scholar 

  • Ayella A, Lim S, Jiang Y et al (2010) Cytostatic inhibition of cancer cell growth by lignan secoisolariciresinol diglucoside. Nutr Res 30(11):762–769

    Article  CAS  PubMed  Google Scholar 

  • Barkhem T, Carlsson B, Nilsson Y et al (1998) Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 54(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Begum AN, Nicolle C, Mila I et al (2004) Dietary lignins are precursors of mammalian lignans in rats. J Nutr 134(1):120–127

    Article  CAS  PubMed  Google Scholar 

  • Brenes M, García A, Dobarganes M-C et al (2002) Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. J Agric Food Chem 50(21): 5962–5967

    Article  CAS  PubMed  Google Scholar 

  • Brito AF, Zang Y (2018) A review of lignan metabolism, milk enterolactone concentration, and antioxidant status of dairy cows fed flaxseed. Molecules 24(1):41

    Article  PubMed Central  CAS  Google Scholar 

  • Buck K, Zaineddin AK, Vrieling A et al (2010) Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92(1):141–153

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Pancorbo A, Neusü C, Pelzing M et al (2010) CE- and HPLC-TOF-MS for the characterization of phenolic compounds in olive oil. Electrophoresis 28(5):806–821

    Article  CAS  Google Scholar 

  • Carreau C, Flouriot G, Bennetau-Pelissero C et al (2008) Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERα transcriptional activation in human breast cancer cells. J Steroid Biochem Mol Biol 110(1):176–185

    Article  CAS  PubMed  Google Scholar 

  • Castiglione F, Taddei A, Degl’Innocenti DR et al (2008) Expression of estrogen receptor beta in colon cancer progression. Diagn Mol Pathol 17(4):231–236

    Article  CAS  PubMed  Google Scholar 

  • Cerretani L, Bendini A, Rodriguez-Estrada MT et al (2009) Microwave heating of different commercial categories of olive oil: part I. Effect on chemical oxidative stability indices and phenolic compounds. Food Chem 115(4):1381–1388

    Article  CAS  Google Scholar 

  • Chang J, Reiner J, Xie J (2005) Progress on the chemistry of dibenzocyclooctadiene lignans. Chem Rev 105(12): 4581–4609

    Google Scholar 

  • Chavali SR, Zhong WW, Forse RA (1998) Dietary α-linolenic acid increases TNF-α, and decreases IL-6, IL-10 in response to LPS: effects of sesamin on the Δ-5 desaturation of ω6 and ω3 fatty acids in mice. Prostaglandins Leukot Essent Fatty Acids 58(3):185–191

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Fang J, Sun Z, Li H et al (2009) Enterolactone inhibits insulin-like growth factor-1 receptor signaling in human prostatic carcinoma PC-3 cells. J Nutr 139(4):653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YW, Takamatsu S, Khan SI et al (2006) Schisandrene, a dibenzocyclooctadiene lignan from Schisandra chinensis: structure-antioxidant activity relationships of dibenzocyclooctadiene lignans. J Nat Prod 69(3):356–359

    Article  CAS  PubMed  Google Scholar 

  • Clark WF, Kortas C, Heidenheim AP et al (2001) Flaxseed in lupus nephritis: a two-year nonplacebo-controlled crossover study. J Am Coll Nutr 20(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Clavel T, Doré J, Blaut M et al (2006) Bioavailability of lignans in human subjects. Nutr Res Rev 19(2):187–196

    Article  CAS  PubMed  Google Scholar 

  • Dagmar F, Regina P, Jakob L et al (2010) The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics 7(18):3278–3288

    Google Scholar 

  • Dar AA, Arumugam N (2013) Lignans of sesame: purification methods, biological activities and biosynthesis – a review. Bioorg Chem 50:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Switzer BR, Demark-Wahnefried W (2001) Effect of mammalian lignans on the growth of prostate cancer cell lines. Anticancer Res 21(6A):3995–3999

    Google Scholar 

  • Demark-Wahnefried W, Price DT, Polascik TJ et al (2001) Pilot study of dietary fat restriction and flaxseed supplementation in men with prostate cancer before surgery: exploring the effects on hormonal levels, prostate-specific antigen, and histopathologic features. Urology 58(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Demark-Wahnefried W, Robertson CN, Walther PJ et al (2004) Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. Urology 63(5):900–904

    Article  PubMed  Google Scholar 

  • Dupasquier CMC, Dibrov E, Kneesh AL et al (2007) Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions. Am J Physiol Heart Circ Physiol 293(4):2394–2402

    Article  CAS  Google Scholar 

  • Fang X, Hu X (2018) Advances in the synthesis of lignan natural products. Molecules 23(12). https://doi.org/10.3390/molecules23123385

  • Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2(3):307–320

    Article  CAS  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4(11):309–314

    Article  CAS  PubMed  Google Scholar 

  • Grougnet R, Magiatis P, Laborie H et al (2012) Sesamolinol glucoside, disaminyl ether, and other lignans from sesame seeds. J Agric Food Chem 60(1):108–111

    Article  CAS  PubMed  Google Scholar 

  • Hébert-Croteau N (1998) A meta-analysis of hormone replacement therapy and colon cancer in women. Cancer Epidemiol Biomarkers Prev 7(8):653

    PubMed  Google Scholar 

  • Heinonen S, Nurmi T, Liukkonen K et al (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49(7): 3178–3186

    Article  CAS  PubMed  Google Scholar 

  • Hemmings SJ, Barker L (2010) The effects of dietary flaxseed on the Fischer 344 rat: I. Development, behaviour, toxicity and the activity of liver gamma-glutamyltranspeptidase. Cell Biochem Funct 22(2):113–121

    Article  CAS  Google Scholar 

  • Hirata F, Fujita K, Ishikura Y et al (1996) Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122(1):135–136

    Article  CAS  PubMed  Google Scholar 

  • Horner NK, Kristal AR, Prunty J et al (2002) Dietary determinants of plasma enterolactone. Cancer Epidemiol Biomarkers Prev 11(1):121

    CAS  PubMed  Google Scholar 

  • Horn-Ross PL, Barnes S, Lee VS et al (2006) Reliability and validity of an assessment of usual phytoestrogen consumption (United States). Cancer Causes Control 17(1):85–93

    Article  PubMed  Google Scholar 

  • Hosseinian FS, Muir AD, Westcott ND et al (2007) AAPH-mediated antioxidant reactions of secoisolariciresinol and SDG. Org Biomol Chem 5(4):644–654

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Yuan YV, Kitts DD (2007) Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro. Food Chem Toxicol 45(11):2219–2227

    Article  CAS  PubMed  Google Scholar 

  • Hyvarinen HK, Juha-Matti P, Hiidenhovi JA et al (2006) Effect of processing and storage on the stability of flaxseed lignan added to bakery products. J Agric Food Chem 54(1):48–53

    Article  PubMed  CAS  Google Scholar 

  • Jan K-C, Hwang LS, Ho C-T (2009) Biotransformation of sesaminol triglucoside to mammalian lignans by intestinal microbiota. J Agric Food Chem 57(14):6101–6106

    Article  CAS  PubMed  Google Scholar 

  • Jan KC, Ho CT, Hwang LS (2010) Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Mol Nutr Food Res 53(S1):36–43

    Article  Google Scholar 

  • Jansen GHE, Arts ICW, Nielen MWF et al (2005) Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells. Arch Biochem Biophys 435(1):74–82

    Article  CAS  PubMed  Google Scholar 

  • Jassam N, Bell SM, Speirs V et al (2005) Loss of expression of oestrogen receptor beta in colon cancer and its association with Dukes’ staging. Oncol Rep 14(1):17–21

    CAS  PubMed  Google Scholar 

  • Jeong SM, Kim S, Kim DR et al (2010) Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. J Food Sci 69(5):C377–C381

    Article  Google Scholar 

  • Johnsen NF, Olsen A, Thomsen BLR et al (2010) Plasma enterolactone and risk of colon and rectal cancer in a case–cohort study of Danish men and women. Cancer Causes Control 21(1): 153–162

    Article  PubMed  Google Scholar 

  • Julia P, Johanna D, Herman A et al (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68(10):571–603

    Article  Google Scholar 

  • Kamaleldin A, Yousif G (1992) A furofuran lignan from Sesamum alatum. Phytochemistry 31(8):2911–2912

    Article  CAS  Google Scholar 

  • Kilkkinen A, Stumpf K, Pietinen P et al (2001) Determinants of serum enterolactone concentration. Am J Clin Nutr 73(6):1094

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Lee MK, Koo KA et al (2004) Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res 76(3):397–405

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Park SH, Choung MG (2006) Nondestructive determination of lignans and lignan glycosides in sesame seeds by near infrared reflectance spectroscopy. J Agric Food Chem 54(13):4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Knust U, Hull WE, Spiegelhalder B (2006) Analysis of enterolignan glucuronides in serum and urine by HPLC-ESI-MS. Food Chem Toxicol 44(7):1038–1049

    Article  CAS  PubMed  Google Scholar 

  • Konstantinopoulos PA, Kominea A, Vandoros G et al (2003) Oestrogen receptor beta (ERβ) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer 39(9):1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Kotsiou K, Tasioula-Margari M, Daskalaki D, Kefi G (2009) Evaluation of phenolic compound degradation in virgin olive oil during storage and heating. J Food Nutr Res 48(1):31–41

    Google Scholar 

  • Kuhnle GGC, Dell’aquila C, Aspinall SM et al (2009) Phytoestrogen content of cereals and cereal-based foods consumed in the UK. Nutr Cancer 61(3):302–309

    Article  CAS  PubMed  Google Scholar 

  • Kuijsten A, Arts ICW, Vree TB et al (2005) Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. J Nutr 135(4):795–801

    Article  CAS  PubMed  Google Scholar 

  • Kuijsten A, Arts IC, Hollman PC et al (2006) Plasma enterolignans are associated with lower colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 15(6):1132–1136. https://doi.org/10.1158/1055-9965.EPI-05-0991

    Article  CAS  PubMed  Google Scholar 

  • Kuijsten A, Bueno-de-Mesquita HB, Boer JM et al (2009) Plasma enterolignans are not associated with nonfatal myocardial infarction risk. Atherosclerosis 203(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Kumar CM, Rao AGA, Singh SA (2010) Effect of infrared heating on the formation of sesamol and quality of defatted flours from Sesamum indicum L. J Food Sci 74(4):H105–H111

    Article  CAS  Google Scholar 

  • Lampe JW, Atkinson C, Hullar MA (2006) Assessing exposure to lignans and their metabolites in humans. J AOAC Int 89(4):1174

    Article  CAS  PubMed  Google Scholar 

  • Landete JM (2012) Plant and mammalian lignans: a review of source, intake, metabolism, intestinal bacteria and health. Food Res Int 46(1):410–424

    Article  CAS  Google Scholar 

  • Lee IS, Jung KY, Oh SR et al (1999) Structure-activity relationships of lignans from Schisandra chinensis as platelet activating factor antagonists. Biol Pharm Bull 22(3):265–267

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Jeung MK, Park MH et al (2010) Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chem 118(3):681–685. https://doi.org/10.1016/j.foodchem.2009.05.040

    Article  CAS  Google Scholar 

  • Lemay A, Dodin S, Kadri N et al (2002) Flaxseed dietary supplement versus hormone replacement therapy in hypercholesterolemic menopausal women. Obstet Gynecol 100(3):495–504

    CAS  PubMed  Google Scholar 

  • Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr 136(4): 906–912

    Article  CAS  PubMed  Google Scholar 

  • Low YL, Dunning AM, Dowsett M et al (2007) Phytoestrogen exposure is associated with circulating sex hormone levels in postmenopausal women and interact with ESR1 and NR1I2 gene variants. Cancer Epidemiol Biomarkers Prev 16(5):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Milder IEJ, Arts ICW, van de Putte B et al (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93(3): 393–402

    Article  CAS  PubMed  Google Scholar 

  • Moazzami AA, Andersson RE, Kamal-Eldin A (2006) HPLC analysis of sesaminol glucosides in sesame seeds. J Agric Food Chem 54(3):633–638

    Article  CAS  PubMed  Google Scholar 

  • Moneim AEA, Bauomy AA, Diab MMS et al (2014) The protective effect of Physalis peruviana L. against cadmium-induced neurotoxicity in rats. Biol Trace Elem Res 160(3):392–399

    Article  PubMed  CAS  Google Scholar 

  • Morton MS, Chan PS, Cheng C et al (2015) Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 32(2):122–128

    Article  Google Scholar 

  • Murkovic M, Piironen V, Lampi AM et al (2004) Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 1: non-volatile compounds). Food Chem 84(3):367–374

    Article  CAS  Google Scholar 

  • Namino T, Yasuhiro T, Yoshinori K (2013) Pharmacokinetics and safety of the sesame lignans, sesamin and episesamin, in healthy subjects. Biopharm Drug Dispos 34(8):462–473

    Article  CAS  Google Scholar 

  • Nelson HD, Humphrey LL, Peggy N et al (1997) Postmenopausal hormone replacement therapy: scientific review. Br Med J 9(3):207–212

    Google Scholar 

  • Niemeyer HB, Metzler M (2002) Oxidative metabolites and genotoxic potential of mammalian and plant lignans in vitro. J Chromatogr B 777(1):321–327

    Article  CAS  Google Scholar 

  • Ogborn MR, Nitschmann E, Bankovic-Calic N et al (2002) Dietary flax oil reduces renal injury, oxidized LDL content, and tissue n−6/n−3 FA ratio in experimental polycystic kidney disease. Lipids 37(11):1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Oikarinen S, Heinonen S-M, Nurmi T et al (2005) No effect on adenoma formation in Min mice after moderate amount of flaxseed. Eur J Nutr 44(5):273–280

    Article  CAS  PubMed  Google Scholar 

  • Pajari AM, Smeds AI, Oikarinen SI et al (2006) The plant lignans matairesinol and secoisolariciresinol administered to Min mice do not protect against intestinal tumor formation. Cancer Lett 233(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Pan JY, Chen SL, Yang MH et al (2009) An update on lignans: natural products and synthesis. Nat Prod Rep 26(10):1251–1292

    Article  CAS  PubMed  Google Scholar 

  • Pauliina D, Tarja N, Anu S et al (2011) A single dose of enterolactone activates estrogen signaling and regulates expression of circadian clock genes in mice. J Nutr 141(9):1583–1589

    Article  CAS  Google Scholar 

  • Peñalvo JL, Tarja N, Kati H et al (2004) Determination of lignans in human plasma by liquid chromatography with coulometric electrode array detection. Anal Biochem 332(2):384–393

    Article  PubMed  CAS  Google Scholar 

  • Peñalvo JL, Heinonen SM, Aura AM et al (2005) Dietary sesamin is converted to enterolactone in humans. J Nutr 135(5):1056–1062

    Article  PubMed  Google Scholar 

  • Penttinen P, Jaehrling J, Damdimopoulos AE et al (2007) Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148(10):4875–4886

    Article  CAS  PubMed  Google Scholar 

  • Pianjing P, Thiantanawat A, Rangkadilok N et al (2011) Estrogenic activities of sesame lignans and their metabolites on human breast cancer cells. J Agric Food Chem 59(1):212

    Article  CAS  PubMed  Google Scholar 

  • Prasad K (1997) Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Mol Cell Biochem 168(1–2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Prasad K (2002) Suppression of phosphoenolpyruvate carboxykinase gene expression by secoisolariciresinol diglucoside (SDG), a new antidiabetic agent. Int J Angiol 11(02):107–109

    Article  CAS  Google Scholar 

  • Qu H, Madl RL, Takemoto DJ et al (2005) Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. J Nutr 135(3):598

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Chen X, Zhong G et al (2014) Effect of Tacrolimus on the pharmacokinetics of bioactive lignans of Wuzhi tablet (Schisandra sphenanthera extract) and the potential roles of CYP3A and P-gp. Phytomedicine 21(5):766–772

    Google Scholar 

  • Sa F, Guo BJ, Li S et al (2015) Pharmacokinetic study and optimal formulation of new anti-Parkinson natural compound schisantherin A. Parkinsons Dis 2015(5):951

    Google Scholar 

  • Saarinen NM, Wärri A, Airio M et al (2010) Role of dietary lignans in the reduction of breast cancer risk. Mol Nutr Food Res 51(7):857–866

    Article  CAS  Google Scholar 

  • Satake H, Koyama T, Bahabadi SE et al (2015) Essences in metabolic engineering of lignan biosynthesis. Metabolites 5(2):270–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyamoorthy N, Wang TT, Phang JM (1994) Stimulation of pS2 expression by diet-derived compounds. Cancer Res 54(4):957–961

    CAS  PubMed  Google Scholar 

  • Shao B, Tang J, Ji H et al (2010) Enhanced oral bioavailability of Wurenchun (Fructus Schisandrae Chinensis extracts) by self-emulsifying drug delivery systems. Drug Dev Commun 36(11):8

    Google Scholar 

  • Smeds AI, Kristo H, Hurmerinta TT et al (2006) Determination of plant and enterolignans in human serum by high-performance liquid chromatography with tandem mass spectrometric detection. J Pharm Biomed Anal 41(3):898–905

    Article  CAS  PubMed  Google Scholar 

  • Smeds AI, Eklund PC, Sjöholm RE et al (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55(4):1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Song J-X, Lin X, Wong RN-S et al (2015) Protective effects of dibenzocyclooctadiene lignans from Schisandra chinensis against beta-amyloid and homocysteine neurotoxicity in PC12 cells. Phytother Res 25(3):435–443

    Google Scholar 

  • Stasevich OV, Mikhalenok SG, Kurchenko VP (2009) Selection of optimal conditions for separating lignan-containing extract from oil flax seed by thin-layer chromatography. Pharm Chem J 43(7):415–417

    Article  CAS  Google Scholar 

  • StrandÃ¥s C, Kamal-Eldin A, Andersson R (2008) Phenolic glucosides in bread containing flaxseed. Food Chem 110(4):997–999

    Article  PubMed  CAS  Google Scholar 

  • Su GY, Cheng YC, Wang KW (2016) An unusual tetrahydrofuran lignan from the roots of Zanthoxylum planispinum and the potential anti-inflammatory effects. Chem Biodivers 14(1):e1600214

    Google Scholar 

  • Tarja N, Sari V, Kristiina N et al (2003) Liquid chromatography method for plant and mammalian lignans in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 798(1):101–110

    Article  CAS  Google Scholar 

  • Teponno RB, Kusari S, Spiteller M et al (2016) Recent advances in research on lignans and neolignans. Nat Prod Rep 33(9):1044

    Article  CAS  PubMed  Google Scholar 

  • Tibiriçá E (2010) Cardiovascular properties of yangambin, a lignan isolated from Brazilian plants. Cardiovasc Ther 19(4):313–328

    Google Scholar 

  • Tou JC, Chen J, Thompson LU (1999) Dose, timing, and duration of flaxseed exposure affect reproductive indices and sex hormone levels in rats. J Toxicol Environ Health 56(8):555–570

    Article  CAS  Google Scholar 

  • Touillaud MS, Pillow PC, Jelena J et al (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutr Cancer 51(2): 162–169

    Article  CAS  PubMed  Google Scholar 

  • Touillaud MS, Thiébaut AC, Fournier A (2007) Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99(6):475

    Article  CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    Article  CAS  PubMed  Google Scholar 

  • Wada-Hiraike O, Warner M, Gustafsson J-A (2006) New developments in oestrogen signalling in colonic epithelium. Biochem Soc Trans 34(Pt 6):1114

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Morita S, Kobayashi M et al (2011) Rapid determination and pharmacokinetics study of lignans in rat plasma after oral administration of Schisandra chinensis extract and pure deoxyschisandrin. Biomed Chromatogr 25(7):808–815

    Article  CAS  Google Scholar 

  • Wang Z, You L, Chen Y et al (2017) Investigation on pharmacokinetics, tissue distribution and excretion of Schisandrin B in rats by HPLC-MS/MS. Biomed Chromatogr 32(83):4069

    Google Scholar 

  • Westcott ND, Muir AD (2003) Flax seed lignan in disease prevention and health promotion. Phytochem Rev 2(3):401–417

    Article  CAS  Google Scholar 

  • Wu, WH, Kang, YP, Wang, NH et al (2006) Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr 136(5):1270–1275

    Google Scholar 

  • Wu WH (2007) The contents of lignans in commercial sesame oils of Taiwan and their changes during heating. Food Chem 104(1):341–344

    Article  CAS  Google Scholar 

  • Yim TK, Ko KM (1999) Methylenedioxy group and cyclooctadiene ring as structural determinants of schisandrin in protecting against myocardial ischemia-reperfusion injury in rats. Biochem Pharmacol 57(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Young PS, Yoe-Sik B, Jung KM et al (2014) Comparison of anti-inflammatory potential of four different dibenzocyclooctadiene lignans in microglia; action via activation of PKA and Nrf-2 signaling and inhibition of MAPK/STAT/NF-κB pathways. Mol Nutr Food Res 58(4):738–748

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, J., Chen, Y., Ye, X. (2021). Lignans in Diets. In: Xiao, J., Sarker, S.D., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4148-3_38

Download citation

Publish with us

Policies and ethics