Skip to main content

Biology of Floral Scent Volatiles in Ornamental Plants

  • Reference work entry
  • First Online:
Floriculture and Ornamental Plants

Abstract

Floral scent has fascinated humans since antiquity and since then played a major aesthetic and commercial role in our lives. Yet, the principal function of the plethora of volatile compounds is to promote ecological interactions between flowers and their specific pollinators. Floral fragrance is composed of low molecular weight volatile organic compounds (VOCs) and derived from the terpenoid, phenylpropanoid/benzenoid, and fatty acid biosynthetic pathways. These pathways are regulated by a network of complex endogenous and external factors that generate a fine-tuned temporal emission of floral scent. They are produced in different subcellular compartments of the floral tissue and rely on primary metabolic pathways for the supply of precursors for their biosynthesis. Recent advances in instrumentation, in association with our current ability to isolate and characterize genes and the enzymes they encode, have greatly improved our understanding of how plants synthesize and regulate the production of these specialized compounds. In this chapter, we provide an overview of the complex biological mechanisms governing the biogenesis of scent in flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y (2017) Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246:803–816

    Article  CAS  PubMed  Google Scholar 

  • Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, Lynch JH, Alam I, Junqueira B, Benke R, Ray S, Porter JA (2017) Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356:1386–1388

    Article  CAS  PubMed  Google Scholar 

  • Baldermann S, Yang Z, Sakai M, Fleischmann P, Watanabe N (2009) Volatile constituents in the scent of roses. Floricul Ornament Biotech 3:89–97

    Google Scholar 

  • Barman M, Mitra A (2021) Floral maturation and changing air temperature influence scent volatile biosynthesis and emission in Jasminum auriculatum Vahl. Environ Exp Bot 181:104296

    Article  CAS  Google Scholar 

  • Barman M, Kotamreddy JN, Agarwal A, Mitra A (2020) Enhanced emission of linalool from floral scent volatile bouquet in Jasminum auriculatum variants developed via gamma irradiation. Ind Crop Prod 152:112545

    Article  CAS  Google Scholar 

  • Bera P, Mukherjee C, Mitra A (2017) Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci 256:25–38

    Article  CAS  PubMed  Google Scholar 

  • Borghi M, Fernie AR (2017) Floral metabolism of sugars and amino acids: implications for pollinators’ preferences and seed and fruit set. Plant Physiol 175:1510–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cna’ani A, Shavit R, Ravid J, Aravena-Calvo J, Skaliter O, Masci T, Vainstein A (2017) Phenylpropanoid scent compounds in petunia x hybrida are glycosylated and accumulate in vacuoles. Front Plant Sci 8:1898

    Article  PubMed  PubMed Central  Google Scholar 

  • Colquhoun TA, Schwieterman ML, Gilbert JL, Jaworski EA, Langer KM, Jones CR, Rushing GV, Hunter TM, Olmstead J, Clark DG, Folta KM (2013) Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biol Technol 86:37–44

    Article  CAS  Google Scholar 

  • Cui J, Katsuno T, Totsuka K, Ohnishi T, Takemoto H, Mase N, Toda M, Narumi T, Sato K, Matsuo T, Mizutani K (2016) Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J Agric Food Chem 64:1151–1157

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Buss D, Rohrbeck D, Piechulla B (2006) Localization of the synthesis and emission of scent compounds within the flower. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 105–124

    Chapter  Google Scholar 

  • Francis MJ, Allcock C (1969) Geraniol β-D-glucoside; occurrence and synthesis in rose flowers. Phytochemistry 8:1339–1347

    Article  CAS  Google Scholar 

  • Gang DR, Simon J, Lewinsohn E, Pichersky E (2002) Peltate glandular trichomes of Ocimum basilicum L.(Sweet Basil) contain high levels of enzymes involved in the biosynthesis of phenylpropenes. Int J Geogr Inf Syst 9:189–195

    CAS  Google Scholar 

  • Goodwin SM, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117:435–443

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Mielczarek O, Krank A, Roman A, Webb AA (2017) Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiol 175:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetter R (2006) Examination of the processes involved in the emission of scent volatiles from flowers. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 125–144

    Google Scholar 

  • Ke M, Gao Z, Chen J, Qiu Y, Zhang L, Chen X (2018) Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biol 18:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT (2013) Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett 16:299–306

    Article  PubMed  Google Scholar 

  • Knauer AC, Schiestl FP (2015) Bees use honest floral signals as indicators of reward when visiting flowers. Ecol Lett 18:135–143

    Article  CAS  PubMed  Google Scholar 

  • Koeduka T (2014) The phenylpropene synthase pathway and its applications in the engineering of volatile phenylpropanoids in plants. Plant Biotechnol 31:401–407

    Article  CAS  Google Scholar 

  • Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutty NN, Mitra A (2019) Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars. Phytochemistry 162:10–20

    Article  CAS  PubMed  Google Scholar 

  • Kutty NN, Ghissing U, Kumar M, Maiti MK, Mitra A (2020) Intense floral scent emission in Polianthes tuberosa L.(Tuberose) variants sprouted from γ-irradiated tubers. J Plant Growth Regul 39:112–121

    Article  CAS  Google Scholar 

  • Lavy M, Zuker A, Lewinsohn E, Larkov O, Ravid U, Vainstein A, Weiss D (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111

    Article  CAS  Google Scholar 

  • Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao P, Ray S, Boachon B, Lynch JH, Deshpande A, McAdam S, Morgan JA, Dudareva N (2021) Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nat Chem Biol 17:138–145

    Article  CAS  PubMed  Google Scholar 

  • Lücker J, Bouwmeester HJ, Schwab W, Blaas J, Van Der Plas LH, Verhoeven HA (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. Plant J 27:315–324

    Article  PubMed  Google Scholar 

  • Maiti S, Mitra A (2017) Morphological, physiological and ultrastructural changes in flowers explain the spatio-temporal emission of scent volatiles in Polianthes tuberosa L. Plant Cell Physiol 58:2095–2111

    Article  CAS  PubMed  Google Scholar 

  • Mettal U, Boland W, Beyer P, Kleinig H (1988) Biosynthesis of monoterpene hydrocarbons by isolated chromoplasts from daffodil flowers. Eur J Biochem 170:613–616

    Article  CAS  PubMed  Google Scholar 

  • Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B, Perera MA, Nikolau BJ, Vitek O, Morgan JA, Dudareva N (2012) Developmental changes in the metabolic network of snapdragon flowers. PLoS One 7:e40381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhlemann JK, Klempien A, Dudareva N (2014a) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949

    Article  PubMed  Google Scholar 

  • Muhlemann JK, Woodworth BD, Morgan JA, Dudareva N (2014b) The monolignol pathway contributes to the biosynthesis of volatile phenylpropenes in flowers. New Phytol 204:661–670

    Article  CAS  PubMed  Google Scholar 

  • Overland L (1960) Endogenous rhythm in opening and odor of flowers of Cestrum nocturnum. Am J Bot 47:378–382

    Article  Google Scholar 

  • Paul I, Bhadoria PB, Mitra A (2020) Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (Linn.) Jack flowers are contributed by separate volatile components. Biochem Syst Ecol 89:104004

    Article  CAS  Google Scholar 

  • Qualley AV, Dudareva N (2009) Metabolomics of plant volatiles. Methods Mol Biol 553:329–343

    Article  CAS  PubMed  Google Scholar 

  • Sagae M, Oyama-Okubo N, Ando T, Marchesi E, Nakayama M (2008) Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci Biotechnol Biochem 72:110–115

    Article  CAS  PubMed  Google Scholar 

  • Schrempf M (1977) Studies of the circadian rhythm of petal movement in Kalanchoe blossfeldiana. Biol Rhythm Res 8:396–400

    CAS  Google Scholar 

  • Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc’h N, Clastre M (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914

    Article  CAS  PubMed  Google Scholar 

  • Skubatz H, Kunkel DD, Patt JM, Howald WN, Hartman TG, Meeuse BJ (1995) Pathway of terpene excretion by the appendix of Sauromatum guttatum. Proc Natl Acad Sci 92:10084–10088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Härtl K, McGraphery K, Hoffmann T, Schwab W (2018) Attractive but toxic: emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Mol Plant 11:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis Book 9:e0143

    Article  PubMed  PubMed Central  Google Scholar 

  • Tissier A, Morgan JA, Dudareva N (2017) Plant volatiles: going ‘in’ but not ‘out’ of trichome cavities. Trends Plant Sci 22:930–938

    Article  CAS  PubMed  Google Scholar 

  • Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, Simkin AJ, Sims CA, Schmelz EA, Klee HJ, Clark DG (2005) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 138:255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vereecken NJ, Schiestl FP (2009) On the roles of colour and scent in a specialized floral mimicry system. Ann Bot 104:1077–1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97

    Article  CAS  PubMed  Google Scholar 

  • Widhalm JR, Jaini R, Morgan JA, Dudareva N (2015) Rethinking how volatiles are released from plant cells. Trends Plant Sci 20:545–550

    Article  CAS  PubMed  Google Scholar 

  • Wiemer AP, More M, Benitez-Vieyra S, Cocucci AA, Raguso RA, Sérsic AN (2009) A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae). Plant Biol 11:506–514

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GH, Jiang NH, Song WL, Ma CH, Yang SC, Chen JW (2016) De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine. Front Plant Sci 7:1209

    PubMed  PubMed Central  Google Scholar 

  • Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41

    Article  CAS  Google Scholar 

  • Zvi MM, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A (2012) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195:335–345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research work on floral scent biology in the authors’ laboratory was supported by research grants from the Science and Engineering Research Board (www.serb.gov.in), India [EMR/2015/000247/PS], Department of Science and Technology, Government of India [DST/INT/RUS/RFBR/P-329] and by the Council of Scientific and Industrial Research (www.csirhrdg.res.in), India [38(1336)/12/EMR-II and 38(1420)/16/EMR-II]. U Ghissing was a recipient of an individual research fellowship [09/081(1291)/2017-EMR-I] from CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghissing, U., Mitra, A. (2022). Biology of Floral Scent Volatiles in Ornamental Plants. In: Datta, S.K., Gupta, Y.C. (eds) Floriculture and Ornamental Plants. Handbooks of Crop Diversity: Conservation and Use of Plant Genetic Resources. Springer, Singapore. https://doi.org/10.1007/978-981-15-3518-5_27

Download citation

Publish with us

Policies and ethics