Skip to main content

Epigenetics of Psoriasis

  • Chapter
  • First Online:
Epigenetics in Allergy and Autoimmunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

Psoriasis is a chronic and recurrent inflammatory skin disease, involving the rapid proliferation and abnormal differentiation of keratinocytes and activation of T cells. It is generally accepted that the central pathogenesis of psoriasis is a T cell-dominant immune disorder affected by multiple factors including genetic susceptibility, environmental factors, innate and adaptive immune responses, etc. However, the exact etiology is largely unknown. In recent years, epigenetic involvements, such as the DNA methylation, chromatin modifications, and noncoding RNA regulation are reported to be critical for the pathogenesis of psoriasis. However, the interplay between these factors has only recently been started to be unraveled. Notably, inhibitors of enzymes that work in epigenetic modifications, such as DNA methyltransferases and histone deacetylases, are beginning to appear in the clinical setting to restore normal epigenetic patterns (Generali et al. in J Autoimmun 83:51–61, 2017), providing novel therapeutic potential as novel treatment targets for psoriasis. Indeed, medications previously used to treat autoimmune diseases have later been discovered to exert their action via epigenetic mechanisms. Herein, we review the findings on epigenetics associated with psoriasis, and discuss future perspectives in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn R et al (2016) Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genom 17:841

    Article  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J et al (2015) Epigenetic downregulation of SFRP4 contributes to epidermal hyperplasia in psoriasis. J Immunol 194:4185–4198

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian J et al (2018) miR-340 alleviates psoriasis in mice through direct targeting of IL-17A. J Immunol 201:1412–1420

    Article  CAS  PubMed  Google Scholar 

  • Blander G et al (2009) SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 129:41–49

    Article  CAS  PubMed  Google Scholar 

  • Bovenschen HJ et al (2011) Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol 131:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Chandra A, Senapati S, Roy S, Chatterjee G, Chatterjee R (2018) Epigenome-wide DNA methylation regulates cardinal pathological features of psoriasis. Clin Epigenetics 10:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2008) The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance. Br J Dermatol 158:987–993

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2016) Hypermethylation of HLA-C may be an epigenetic marker in psoriasis. J Dermatol Sci 83:10–16

    Article  CAS  PubMed  Google Scholar 

  • Chow M, Boheler KR, Li RA (2013) Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther 4:97

    Article  PubMed  PubMed Central  Google Scholar 

  • DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 94:7245–7250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP (2018) The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 378:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodriguez S et al (2014) Abnormal levels of expression of plasma microRNA-33 in patients with psoriasis. Actas Dermosifiliogr 105:497–503

    Article  CAS  PubMed  Google Scholar 

  • Generali E, Ceribelli A, Stazi MA, Selmi C (2017) Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun 83:51–61

    Article  CAS  PubMed  Google Scholar 

  • Guinea-Viniegra J et al (2014) Targeting miR-21 to treat psoriasis. Sci Transl Med 6:225re1

    Article  PubMed  CAS  Google Scholar 

  • Gupta R et al (2016) Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol 136:603–609

    Article  CAS  PubMed  Google Scholar 

  • Hammitzsch A et al (2015) CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA 112:10768–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes JE et al (2016) microRNAs in Psoriasis. J Invest Dermatol 136:365–371

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Hsiao KY, Sun HS, Tsai SJ (2017) Circular RNA—new member of noncoding RNA with novel functions. Exp Biol Med (Maywood) 242:1136–1141

    Article  CAS  Google Scholar 

  • Jiang M et al (2017) TGFbeta/SMAD/microRNA-486-3p signaling axis mediates keratin 17 expression and keratinocyte hyperproliferation in psoriasis. J Invest Dermatol 137:2177–2186

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Kim YI, Logan JW, Mason JB, Roubenoff R (1996) DNA hypomethylation in inflammatory arthritis: reversal with methotrexate. J Lab Clin Med 128:165–172

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nat Immunol 4:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (2018a) Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat Commun 9:1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Yang L, Chen LL (2018b) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2015) The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J Mol Cell Biol 7:505–516

    Article  CAS  PubMed  Google Scholar 

  • Liu R et al (2019) Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. Eur J Dermatol 29:29–38

    PubMed  Google Scholar 

  • Lovendorf MB et al (2015) Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis. Exp Dermatol 24:187–193

    Article  CAS  PubMed  Google Scholar 

  • Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG (2013) The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol 34:174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Hajkova P, Ecker JR (2018) Dynamic DNA methylation: in the right place at the right time. Science 361:1336–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak RK, Hundhausen C, Nestle FO (2009) Progress in understanding the immunopathogenesis of psoriasis. Actas Dermosifiliogr 100(Suppl 2):2–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzone R et al (2019) The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics 11:34

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaughlin F, La Thangue NB (2004) Histone deacetylase inhibitors in psoriasis therapy. Curr Drug Targets Inflamm Allergy 3:213–219

    Article  CAS  PubMed  Google Scholar 

  • Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  CAS  PubMed  Google Scholar 

  • Ngalamika O et al (2015) Peripheral whole blood FOXP3 TSDR methylation: a potential marker in severity assessment of autoimmune diseases and chronic infections. Immunol Invest 44:126–136

    Article  CAS  PubMed  Google Scholar 

  • Orecchia A et al (2011) Sirtinol treatment reduces inflammation in human dermal microvascular endothelial cells. PLoS ONE 6:e24307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovejero-Benito MC et al (2018) Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp Dermatol 27:1361–1371

    Article  CAS  PubMed  Google Scholar 

  • Park GT, Han J, Park SG, Kim S, Kim TY (2014) DNA methylation analysis of CD4+ T cells in patients with psoriasis. Arch Dermatol Res 306:259–268

    Article  CAS  PubMed  Google Scholar 

  • Pivarcsi A, Meisgen F, Xu N, Stahle M, Sonkoly E (2013) Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-alpha therapy. Br J Dermatol 169:563–570

    Article  CAS  PubMed  Google Scholar 

  • Qiao M et al (2018) Circular RNA expression profile and analysis of their potential function in psoriasis. Cell Physiol Biochem 50:15–27

    Article  CAS  PubMed  Google Scholar 

  • Rajitha P, Biswas R, Sabitha M, Jayakumar R (2017) Methotrexate in the treatment of psoriasis and rheumatoid arthritis: mechanistic insights, current issues and novel delivery approaches. Curr Pharm Des 23:3550–3566

    Article  CAS  PubMed  Google Scholar 

  • Reilly CM, Regna N, Mishra N (2011) HDAC inhibition in lupus models. Mol Med 17:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberson ED et al (2012) A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 132:583–592

    Article  CAS  PubMed  Google Scholar 

  • Ruchusatsawat K, Wongpiyabovorn J, Shuangshoti S, Hirankarn N, Mutirangura A (2006) SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. J Mol Med (Berl) 84:175–182

    Article  CAS  Google Scholar 

  • Sonkoly E et al (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2:e610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonkoly E et al (2005) Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene. PRINS. J Biol Chem 280:24159–24167

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A et al (2017) MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol 139:550–561

    Article  CAS  PubMed  Google Scholar 

  • Stillman B (2018) Histone modifications: insights into their influence on gene expression. Cell 175:6–9

    Article  CAS  PubMed  Google Scholar 

  • Szegedi K et al (2010) The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA. PRINS. Exp Dermatol 19:269–278

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Castillo LE et al (2007) Under-expression of VHL and over-expression of HDAC-1, HIF-1alpha, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int J Dermatol 46:239–246

    Article  CAS  PubMed  Google Scholar 

  • Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20:5–20

    Article  CAS  PubMed  Google Scholar 

  • Tsoi LC et al (2015) Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol 16:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Ekman AK, Bivik Eding C, Enerback C (2018) Genome-wide DNA methylation profiling identifies differential methylation in uninvolved psoriatic epidermis. J Invest Dermatol 138:1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Vojinovic J, Damjanov N (2011) HDAC inhibition in rheumatoid arthritis and juvenile idiopathic arthritis. Mol Med 17:397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan DC, Wang KC (2014, May 1) Long noncoding RNA: significance and potential in skin biology. Cold Spring Harb Perspect Med 4(5)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L et al (2001) The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414:457–462

    Article  CAS  PubMed  Google Scholar 

  • Wu GC et al (2015) Emerging role of long noncoding RNAs in autoimmune diseases. Autoimmun Rev 14:798–805

    Article  CAS  PubMed  Google Scholar 

  • Wu R et al (2018) MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 128:2551–2568

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia P et al (2012) Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions. Immunol Lett 148:151–162

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Yang Y, Chang C, Lu Q (2017) The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 83:43–50

    Article  CAS  PubMed  Google Scholar 

  • Xu N et al (2013) MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J Immunol 190:678–688

    Article  CAS  PubMed  Google Scholar 

  • Yan S et al (2015) NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun 6:7652

    Article  PubMed  Google Scholar 

  • Yan JJ et al (2019) Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis. Br J Dermatol 180:365–372

    Article  CAS  PubMed  Google Scholar 

  • Zhang K et al (2007) The mRNA expression and promoter methylation status of the p16 gene in colony-forming cells with high proliferative potential in patients with psoriasis. Clin Exp Dermatol 32:702–708

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang R, Li X, Yin G, Niu X (2009) Promoter methylation status of p15 and p21 genes in HPP-CFCs of bone marrow of patients with psoriasis. Eur J Dermatol 19:141–146

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Su Y, Chen H, Zhao M, Lu Q (2010) Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris. J Dermatol Sci 60:40–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang P et al (2013) Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. J Autoimmun 41:17–24

    Article  PubMed  CAS  Google Scholar 

  • Zhang W et al (2014) A single-nucleotide polymorphism of miR-146a and psoriasis: an association and functional study. J Cell Mol Med 18:2225–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2018) MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis. Cell Death Dis 9:567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M et al (2014) Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol 150:22–30

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Wang Z, Yung S, Lu Q (2015) Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol 67:65–74

    Article  CAS  PubMed  Google Scholar 

  • Zhou F et al (2016) Epigenome-wide association analysis identified nine skin DNA methylation loci for psoriasis. J Invest Dermatol 136:779–787

    Article  CAS  PubMed  Google Scholar 

  • Zhou F et al (2018) DNA methylation-based subclassification of psoriasis in the Chinese Han population. Front Med 12:717–725

    Article  PubMed  Google Scholar 

  • Zibert JR et al (2010) MicroRNAs and potential target interactions in psoriasis. J Dermatol Sci 58:177–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann E. Gudjonsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, S., Gudjonsson, J.E. (2020). Epigenetics of Psoriasis. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_8

Download citation

Publish with us

Policies and ethics