Skip to main content

Plant-Mediated Green Synthesis of Nanoparticles

  • Chapter
  • First Online:
Advances in Pharmaceutical Biotechnology

Abstract

Nanotechnology is the field of science which deals with synthesis and applications of nanoparticles. Different approaches and methods are employed for synthesis of nanoparticles. The two approaches used for synthesis of nanoparticles are top-down approach and bottom-up approach. Nanoparticles are synthesized by using chemical, biological, and physical methods. Chemical and physical methods use toxic chemicals, adverse conditions and sophisticated instruments for synthesis of nanoparticles. Compared to chemical and physical method, biological method is cost-effective, does not make use of harmful chemicals, and makes use of normal conditions for the synthesis of nanoparticles. Biological synthesis of nanoparticles makes use of plants, fungi, and bacteria for the synthesis of nanoparticles. This chapter deals with only plant-mediated green synthesis of nanoparticles. Plant-mediated synthesis of nanoparticles can be done by intracellular route, extracellular route, and phytochemical mediated synthesis. Plant-mediated synthesis is employed due to its following advantages such as the use of aqueous solvents, readily availability of plant material, and biocompatibility of extracts obtained from plant species. Various metals such as silver, gold, platinum, pallidum are mainly employed for the synthesis of nanoparticles. The synthesis is nanoparticles that is gaining importance due to its applications in various fields such as medicine, sensing, electronics, wastewater treatment, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, K. B. A., Subramaniam, S., Veerappan, G., Hari, N., Sivasubramanian, A., & Veerappan, A. (2014). β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photo induced rapid green synthesis of silver nanoparticles. RSC Advances, 4, 59130–59136.

    Article  CAS  Google Scholar 

  • Ankamwar, B., Damle, C., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology, 5, 1665–1671.

    Article  CAS  PubMed  Google Scholar 

  • Ankamwar, B., Gharge, M., & Sur, U. K. (2015a). Photocatalytic activity of biologically synthesized silver nanoparticles using flower extract. Advanced Science, Engineering and Medicine, 7, 1–7.

    Article  CAS  Google Scholar 

  • Ankamwar, B., Gharge, M., & Sur, U. K. (2015b). Photocatalytic and surface-enhanced Raman scattering (SERS) activity of biosynthesized anisotropic gold nanoparticles. Advanced Science, Engineering and Medicine, 7, 1–5.

    Article  CAS  Google Scholar 

  • Ankamwar, B., Pansare, S., & Sur, U. K. (2016a). Centrifuge controlled shape tuning of biosynthesized gold nanoparticles obtained from Plumbago zeylanica leaf extract. Journal of Nanoscience and Nanotechnology, 16, 1–5.

    Article  CAS  Google Scholar 

  • Ankamwar, B., Kour, P., Sur, U. K., & Ganguly, T. (2016b). Spontaneous shape transformation of capsular silver microcrystals into defective nanocrystals in aqueous solution. Journal of Nanoscience and Nanotechnology, 16, 1–8.

    Article  CAS  Google Scholar 

  • Ankamwar, B., Sur, U. K., Salgaonkar, M., & Sarma, L. (2016c). Room temperature biosynthesis of highly stable triangular and hexagonal shaped silver nanoparticles using Cordia myxa. Advanced Science, Engineering and Medicine, 8, 1–7.

    Article  CAS  Google Scholar 

  • Ankamwar, B., Karmakar, S., Halder, A., Dasa, P., & Sur, U. K. (2018). Green synthesis of silver nanoparticles using the plant extract of Shikakai and Reetha. Materials Today: Proceedings, 5, 2321–2329.

    Google Scholar 

  • Armendariz, V., Herrera, I., Peralta-Videa, J. R., Jose-Yacaman, M., Troiani, H., Santiago, P., & Gardea-Torresdey, J. L. (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. Journal of Nanoparticle Research, 6, 377–382.

    Article  CAS  Google Scholar 

  • Aromal, S. A., Vidhu, V. K., & Philip, D. (2012). Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 85(14), 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Bankar, A., Joshi, B., Kumar, A. R., & Zinjarde, S. (2010). Banana peel extract mediated novel route for the synthesis of palladium nanoparticles. Materials Letters, 64, 1951–1953.

    Article  CAS  Google Scholar 

  • Basavegowda, N., Sobczak-Kupiec, A., Malina, D., Yathirajan, H. S., Keerthi, V. R., Chandrashekar, N., Dinkar, S., & Liny, P. (2013). Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (pineapple) and evaluation of biological activities. Advanced Materials Letters, 4, 332–337.

    Article  CAS  Google Scholar 

  • Basha, S. K., Govindaraju, K., Manikandan, R., Ahn, J. S., Bae, E. Y., & Singaravelu, G. (2010). Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids and Surfaces, B: Biointerfaces, 75, 405–409.

    Article  CAS  Google Scholar 

  • Chen, J. C., Lin, Z. H., & Ma, X. X. (2003). Evidence of the production of silver 1 nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Letters in Applied Microbiology, 37, 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Coman, C., Leopold, L. F., Rugină, O. D., Barbu-Tudoran, L., Leopold, N., Tofană, M., & Socaciu, C. (2014). Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate. Journal of Nanoparticle Research, 16, 2158–−2166.

    Article  CAS  Google Scholar 

  • Das, R. K., Gogoi, N., & Bora, U. (2011). Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess and Biosystems Engineering, 34, 615–619.

    Article  CAS  PubMed  Google Scholar 

  • Dauthal, P., & Mukhopadhyay, M. (2013a). Biosynthesis of palladium nanoparticles using Delonix regia leaf extract and its catalytic activity for nitro-aromatics hydrogenation. Industrial and Engineering Chemistry Research, 52, 18131–18139.

    Article  CAS  Google Scholar 

  • Dauthal, P., & Mukhopadhyay, M. (2013b). In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract. Journal of Nanoparticle Research, 15, 1366–1376.

    Article  CAS  Google Scholar 

  • Dauthal, P., & Mukhopadhyay, M. (2015). Biofabrication, characterization and possible bioreduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity. Journal of Industrial and Engineering Chemistry, 22, 185–191.

    Article  CAS  Google Scholar 

  • Dauthal, P., & Mukhopadhyay, M. (2016a). AuPd bimetallic nanoparticles: Single step biofabrication, structural characterization and catalytic activity. Journal of Industrial and Engineering Chemistry, 35, 45–53.

    Article  CAS  Google Scholar 

  • Dauthal, P., & Mukhopadhyay, M. (2016b). Noble Metal Nanoparticles: Plant mediated synthesis, mechanistic aspects of synthesis and applications. Industrial and Engineering Chemistry Research, 55, 9557–9577.

    Article  CAS  Google Scholar 

  • Devi, T. B., Ahmaruzzaman, M., & Begum, S. (2016). A rapid, facile and 1 green synthesis of Ag@AgCl nanoparticles for the effective reduction of 2, 4-dinitrophenyl hydrazine. New Journal of Chemistry, 40, 1497–1506.

    Article  CAS  Google Scholar 

  • Dubey, S. P., Lahtinen, M., & Sillanpaa, M. (2010). Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364, 34–41.

    Article  CAS  Google Scholar 

  • Durai, P., Gajendran, A. C. B., Ramar, M., Pappu, S., Kasivelu, G., & Thirunavukkarasu, A. (2014). Synthesis and characterization of silver nanoparticles using crystal compound of sodium para-hydroxybenzoate tetrahydrate isolated from Vitex negundo. L leaves and its apoptotic effect on human colon cancer cell lines. European Journal of Medicinal Chemistry, 84, 90–99.

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi, A. D., & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369, 27–33.

    Article  CAS  Google Scholar 

  • Gan, P. P., & Li, S. F. Y. (2012). Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Reviews in Environmental Science and Biotechnology, 11, 169–206.

    Article  CAS  Google Scholar 

  • Gangula, A., Podila, R., Ramakrishna, M., Karanam, L., Janardhana, C., & Rao, A. M. (2011). Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir, 27, 15268–15274.

    Article  PubMed  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Parsons, J. G., Gomez, E., Peralta-Videa, J., Troiani, H. E., Santiago, P., & Jos Yacaman, M. (2002). Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Letters, 2, 397–−401.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19, 1357–1361.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Rodriguez, E., Parsons, J. G., Peralta-Videa, J. R., Meitzner, G., & Cruz-Jimenez, G. (2005). Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Analytical and Bioanalytical Chemistry, 382, 347–352.

    Article  CAS  PubMed  Google Scholar 

  • Gaware, U., Kamble, V., & Ankamwar, B. (2012). Ecofriendly synthesis of anisotropic gold nanoparticles: A potential candidate of SERS studies. International Journal of Electrochemistry, 2012, 1–6.

    Article  CAS  Google Scholar 

  • Ghoreishi, S. M., Behpour, M., & Khayatkashani, M. (2011). Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E, 44, 97–104.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, R., Loganathan, B., & Raghu, K. (2015). Green synthesis of Au–Ag bimetallic nanocomposites using Silybum marianum seed extract and their application as a catalyst. RSC Advances, 5, 31691–31699.

    Article  CAS  Google Scholar 

  • Govindaraju, K., Kiruthiga, V., Manikandan, R., Ashokkumar, T., & Singaravelu, G. (2011). 2 β-Glucosidase assisted biosynthesis of gold nanoparticles: A green chemistry approach. Materials Letters, 65, 256–−259.

    Article  CAS  Google Scholar 

  • Harris, A. T., & Bali, R. (2008). On the formation and extent of uptake of silver nanoparticles by live plants. Journal of Nanoparticle Research, 10, 691–695.

    Article  CAS  Google Scholar 

  • Haverkamp, R. G., & Marshall, A. T. (2009). The mechanism of metal nanoparticle formation in plants: Limits on accumulation. Journal of Nanoparticle Research, 11, 1453–1463.

    Article  CAS  Google Scholar 

  • Huang, X., Wu, H., Liao, X., & Shi, B. (2010). One-step, size-controlled synthesis of gold nanoparticles at RT using plant tannin. Green Chemistry, 12, 395–399.

    Article  Google Scholar 

  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638–2650.

    Article  CAS  Google Scholar 

  • Isaac, R. S. R., Sakthivel, G., & Murthy, C. (2013). Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. Journal of Nanotechnology, 2013, 906592–906597.

    Article  CAS  Google Scholar 

  • Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2007). Review of some interesting surface Plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2, 107–118.

    Article  CAS  Google Scholar 

  • Kasthuri, J., Veerapandian, S., & Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces, 68, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Kirtiwar, S., Gharpure, S., & Ankamwar, B. (2018). Effect of nutrient media on antibacterial activity of silver nanoparticles synthesized using Neolamarckia cadamba. Journal of Nanoscience and Nanotechnology, 18, 1–11.

    Article  CAS  Google Scholar 

  • Kumar, K. M., Mandal, B. K., Sinha, M., & Krishnakumar, V. (2012). Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 86, 490–494.

    Article  CAS  Google Scholar 

  • Lakshmipathy, R., Reddy, B. P., Sarada, N. C., Chidambaram, K., & Pasha, S. K. (2015). Watermelon rind-mediated green synthesis of noble palladium nanoparticles: Catalytic application. Applied Nanoscience, 5, 223–−228.

    Article  CAS  Google Scholar 

  • Li, Y., Duan, X., Qian, Y., Li, Y., & Liao, H. (1999). Nanocrystalline silver particles: Synthesis, agglomeration, and sputtering induced by electron beam. Journal of Colloid and Interface Science, 209, 347–349.

    Article  CAS  PubMed  Google Scholar 

  • Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. (2015). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5, 875–880.

    Article  CAS  Google Scholar 

  • Milner, M. J., & Kochian, L. V. (2008). Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany, 102, 3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, K., Basavegowda, N., & Lee, Y. R. (2015). Biosynthesis of Fe, Pd, and Fe–Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: A comparative approach. Catalysis Science & Technology, 5, 2612–2621.

    Article  CAS  Google Scholar 

  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, 346–356.

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaran, U., Govindarajan, M., & Rajeswary, M. (2015). Green synthesis of silver nanoparticles from Cassia roxburghii – A most potent power for mosquito control. Parasitology Research, 114, 4385–4395.

    Article  PubMed  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan, K. B., & Sakthivel, N. (2011). Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 169, 59–79.

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh, M., Sajadi, S. M., Rostami-Vartooni, A., & Khalaj, M. (2014). Journey on greener pathways: Use of Euphorbia condylocarpa, M. bieb as reductant and stabilizer for green synthesis of Au/Pd bimetallic nanoparticles as reusable catalysts in the Suzuki and Heck coupling reactions in water. RSC Advances, 4, 43477–43484.

    Article  CAS  Google Scholar 

  • Nemamcha, A., Rehspringer, J. L., & Khatmi, D. (2006). Synthesis of palladium nanoparticles by sonochemical reduction of palladium (II) nitrate in aqueous solution. The Journal of Physical Chemistry. B, 110, 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Parajuli, D., Kawakita, H., Inoue, K., Ohto, K., & Kajiyama, K. (2007). Persimmon peel gel for the selective recovery of gold. Hydrometallurgy, 87, 133–139.

    Article  CAS  Google Scholar 

  • Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  • Raghunandan, D., Basavaraja, S., Mahesh, B., Balaji, S., Manjunath, S. Y., & Venkataraman, A. (2009). Biosynthesis of stable polyshaped gold nanoparticles from microwave exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. NanoBiotechnology, 5, 34–41.

    Article  CAS  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2008). Current trends in phytosynthesis of metal nanoparticles. Critical Reviews in Biotechnology, 28, 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Ramanavicius, A., Kausaite, A., & Ramanaviciene, A. (2005). Biofuel cell based on direct bioelectrocatalysis. Biosensors & Bioelectronics, 20, 1962–1967.

    Article  CAS  Google Scholar 

  • Safaepour, M., Shahverdi, A. R., Shahverdi, H. R., Khorramizadeh, M. R., & Gohari, A. R. (2009). Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma-Wehi 164. Avicenna Journal of Medical Biotechnology, 1, 111–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sathishkumar, M., Sneha, K., & Yun, Y. S. (2009). Palladium nanocrystal synthesis using Curcuma longa tuber extract. International Journal of Materials Sciences, 4, 11–17.

    Google Scholar 

  • Shankar, S. S., Ahmad, A., Pasricha, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13, 1822–1826.

    Article  CAS  Google Scholar 

  • Shubin, Y., Plyusnin, P., & Sharafutdinov, M. (2012). In situ synchrotron study of Au-Pd nanoporous alloy formation by single-source precursor thermolysis. Nanotechnology, 23, 405302–405307.

    Article  PubMed  CAS  Google Scholar 

  • Song, J. Y., Kwon, E. Y., & Kim, B. S. (2010). Biological synthesis of platinum nanoparticles using Diospyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Tamuly, C., Hazarika, M., Bordoloi, M., Bhattacharyya, P. K., & Kar, R. (2014). Biosynthesis of Ag nanoparticles using pedicellamide and its photocatalytic activity: An eco-friendly approach. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 132, 687–691.

    Article  CAS  Google Scholar 

  • Treguer, M., Cointet, C. D., Remita, H., Khatouri, J., Mostafavi, M., Amblard, J., & Belloni, J. (1998). Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. The Journal of Physical Chemistry B, 102, 4310–4321.

    Article  CAS  Google Scholar 

  • Tsai, S. C., Song, Y. L., Tsai, C. S., Yang, C. C., Chiu, W. Y., & Lin, H. M. (2004). Ultrasonic spray pyrolysis for nanoparticles synthesis. Journal of Materials Science, 39, 3647–3657.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Nalini, S. P. K. (2010). Biotemplates in the green synthesis of silver nanoparticles. Biotechnology Journal, 5, 1098–1110.

    Article  CAS  PubMed  Google Scholar 

  • Wong, T. S., & Schwaneberg, U. (2003). Protein engineering in bioelectrocatalysis. Current Opinion in Biotechnology, 14, 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, Y., Chen, J., Wiley, B., & Xia, Y. (2005). Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. Journal of the American Chemical Society, 127, 7332–7333.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 339–353.

    Article  CAS  PubMed  Google Scholar 

  • Yang, F., Cheng, K., Wu, T., Zhang, Y., Yin, J., Wang, G., & Cao, D. (2013). Au-Pd nanoparticles supported on carbon fiber cloth as the electrocatalyst for H2O2 electro reduction in acid medium. Journal of Power Sources, 233, 252–258.

    Article  CAS  Google Scholar 

  • Zhan, G., Huang, J., Du, M., Abdul-Rauf, I., Ma, Y., & Li, Q. (2011). Green synthesis of Au-Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Materials Letters, 65, 2989–2991.

    Article  CAS  Google Scholar 

  • Zheng, B., Kong, T., Jing, X., Odoom-Wubah, T., Li, X., Sun, D., Lu, F., Zheng, Y., Huang, J., & Li, Q. (2013). Plant-mediated synthesis of platinum nanoparticles and its bio-reductive mechanism. Journal of Colloid and Interface Science, 396, 138–145.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balaprasad Ankamwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ankamwar, B., Kirtiwar, S., Shukla, A.C. (2020). Plant-Mediated Green Synthesis of Nanoparticles. In: Patra, J., Shukla, A., Das, G. (eds) Advances in Pharmaceutical Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2195-9_17

Download citation

Publish with us

Policies and ethics