Skip to main content

FDG-PET/CT for Large-Vessel Vasculitis

  • Chapter
  • First Online:
PET/CT for Inflammatory Diseases

Abstract

Patients with large-vessel vasculitis (LVV) may present with nonspecific clinical symptoms and increased inflammatory markers, including C-reactive protein and erythrocyte sedimentation rate. Due to these nonspecific characteristics, routine diagnostic tests may be inconclusive for such patients. FDG-PET/CT is a functional imaging modality that can be a useful tool for diagnosis in inflammatory diseases, as well as in oncology assessments. Functional FDG-PET, when combined with anatomical CT, may be of synergistic value for optimal diagnosis, monitoring of disease activity, and evaluation of damage progression in LVV. Diagnostic delay in patients with LVV may cause severe aortic complications, thereby leading to surgery or angioplasty for occlusive lesions. Thus, early diagnosis and detection of relapse are imperative in clinical practice with respect to LVV. 18F-FDG-PET/CT is a promising modality for use in the assessment of patients with LVV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Gross WL, Trabandt A, Reinhold-Keller E. Diagnosis and evaluation of vasculitis. Rheumatology (Oxford). 2000;39:245–52.

    Article  CAS  Google Scholar 

  3. Kermani TA, Warrington KJ, Crowson CS, et al. Large-vessel involvement in giant cell arteritis: a population-based cohort study of the incidence-trends and prognosis. Ann Rheum Dis. 2013;72:1989–94.

    Article  PubMed  Google Scholar 

  4. Ernst D, Baerlecken NT, Schmidt RE, et al. Large vessel vasculitis and spondyloarthritis: coincidence or associated diseases? Scand J Rheumatol. 2014;43:246–8.

    Article  CAS  PubMed  Google Scholar 

  5. Blockmans D, Stroobants S, Maes A, et al. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med. 2000;108:246–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hotchi M. Pathological studies on Takayasu arteritis. Heart Vessels Suppl. 1992;7:11–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gornik HL, Creager MA. Aortitis. Circulation. 2008;117:3039–51.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kubota R, Yamada S, Kubota K, et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33:1972–80.

    CAS  PubMed  Google Scholar 

  9. de Boysson H, Dumont A, Liozon E, et al. Giant-cell arteritis: concordance study between aortic CT angiography and FDG-PET/CT in detection of large-vessel involvement. Eur J Nucl Med Mol Imaging. 2017;44:2274–9.

    Article  PubMed  CAS  Google Scholar 

  10. Slart R. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45:1250–69.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bucerius J, Mani V, Moncrieff C, et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging. 2014;41:369–83.

    Article  CAS  PubMed  Google Scholar 

  12. Stellingwerff MD, Brouwer E, Lensen KJ, et al. Different scoring methods of FDG PET/CT in giant cell arteritis: need for standardization. Medicine (Baltimore). 2015;94:e1542.

    Article  Google Scholar 

  13. Martinez-Rodriguez I, Martinez-Amador N, Banzo I, et al. Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images. Eur J Nucl Med Mol Imaging. 2014;41:2319–24.

    Article  CAS  PubMed  Google Scholar 

  14. Lensen KD, Comans EF, Voskuyl AE, et al. Large-vessel vasculitis: interobserver agreement and diagnostic accuracy of 18F-FDG-PET/CT. Biomed Res Int. 2015;2015:914692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soussan M, Nicolas P, Schramm C, et al. Management of large-vessel vasculitis with FDG-PET. Medicine. 2015;94:e622.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Besson FL, de Boysson H, Parienti JJ, et al. Towards an optimal semiquantitative approach in giant cell arteritis: an (18)F-FDG PET/CT case-control study. Eur J Nucl Med Mol Imaging. 2014;41:155–66.

    Article  PubMed  Google Scholar 

  17. Lehmann P, Buchtala S, Achajew N, et al. 18F-FDG PET as a diagnostic procedure in large vessel vasculitis-a controlled, blinded re-examination of routine PET scans. Clin Rheumatol. 2011;30:37–42.

    Article  PubMed  Google Scholar 

  18. Wasselius JA, Larsson SA, Jacobsson H. FDG-accumulating atherosclerotic plaques identified with 18F-FDG-PET/CT in 141 patients. Mol Imaging Biol. 2009;11:455–9.

    Article  PubMed  Google Scholar 

  19. Ben-Haim S, Kupzov E, Tamir A, et al. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45:1816–21.

    PubMed  Google Scholar 

  20. Dunphy MP, Freiman A, Larson SM, et al. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005;46:1278–84.

    PubMed  Google Scholar 

  21. Berger P, Vaartjes I, Scholtens A, et al. Differential FDG-PET uptake patterns in uninfected and infected central prosthetic vascular grafts. Eur J Vasc Endovasc Surg. 2015;50:376–83.

    Article  CAS  PubMed  Google Scholar 

  22. Cimmino MA, Camellino D, Paparo F, et al. High frequency of capsular knee involvement in polymyalgia rheumatica/giant cell arteritis patients studied by positron emission tomography. Rheumatology (Oxford). 2013;52:1865–72.

    Article  Google Scholar 

  23. Rehak Z, Szturz P. Comment on: FDG PET in the early diagnosis of large-vessel vasculitis. Eur J Nucl Med Mol Imaging. 2014;41:579–80.

    Article  PubMed  Google Scholar 

  24. de Boysson H, Liozon E, Lambert M, et al. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis: a multicenter cohort of 130 patients. Medicine (Baltimore). 2016;95:e3851.

    Article  CAS  Google Scholar 

  25. Besson FL, Parienti JJ, Bienvenu B, et al. Diagnostic performance of (18)F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2011;38:1764–72.

    Article  PubMed  Google Scholar 

  26. Meller J, Strutz F, Siefker U, et al. Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging. 2003;30:730–6.

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen BD, Gormsen LC, Hansen IT, et al. Three days of high-dose glucocorticoid treatment attenuates large-vessel 18F-FDG uptake in large-vessel giant cell arteritis but with a limited impact on diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2018;45:1119–28.

    Article  CAS  PubMed  Google Scholar 

  28. Palard-Novello X, Querellou S, Gouillou M, et al. Value of (18)F-FDG PET/CT for therapeutic assessment of patients with polymyalgia rheumatica receiving tocilizumab as first-line treatment. Eur J Nucl Med Mol Imaging. 2016;43:773–9.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshifuji H. Pathophysiology of large vessel vasculitis and utility of interleukin-6 inhibition therapy. Mod Rheumatol. 2019;29:287–93.

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe Y, Miyata T, Tanemoto K. Current clinical features of new patients with Takayasu Arteritis observed from Cross-Country Research in Japan: age and sex specificity. Circulation. 2015;132:1701–9.

    Article  PubMed  Google Scholar 

  31. Kobayashi Y, Ishii K, Oda K, et al. Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med. 2005;46:917–22.

    PubMed  Google Scholar 

  32. Pagnoux C, Seror R, Henegar C, et al. Clinical features and outcomes in 348 patients with polyarteritis nodosa: a systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. 2010;62:616–26.

    Article  PubMed  Google Scholar 

  33. Maksimowicz-McKinnon K, Clark TM, Hoffman GS. Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine. 2009;88:221–6.

    Article  PubMed  Google Scholar 

  34. Grayson PC, Maksimowicz-McKinnon K, Clark TM, et al. Distribution of arterial lesions in Takayasu's arteritis and giant cell arteritis. Ann Rheum Dis. 2012;71:1329–34.

    Article  PubMed  Google Scholar 

  35. Kermani TA, Crowson CS, Muratore F, Schmidt J, Matteson EL, Warrington KJ. Extra-cranial giant cell arteritis and Takayasu arteritis: how similar are they? Semin Arthritis Rheum. 2015;44:724–8.

    Article  PubMed  Google Scholar 

  36. Yoshida M, Watanabe R, Ishii T, et al. Retrospective analysis of 95 patients with large vessel vasculitis: a single center experience. Int J Rheum Dis. 2016;19:87–94.

    Article  PubMed  Google Scholar 

  37. Maksimowicz-McKinnon K, Clark TM, Hoffman GS. Limitations of therapy and a guarded prognosis in an American cohort of Takayasu arteritis patients. Arthritis Rheum. 2007;56:1000–9.

    Article  PubMed  Google Scholar 

  38. Hoffman GS, Merkel PA, Brasington RD, Lenschow DJ, Liang P. Anti-tumor necrosis factor therapy in patients with difficult to treat Takayasu arteritis. Arthritis Rheum. 2004;50:2296–304.

    Article  CAS  PubMed  Google Scholar 

  39. Molloy ES, Langford CA, Clark TM, Gota CE, Hoffman GS. Anti-tumour necrosis factor therapy in patients with refractory Takayasu arteritis: long-term follow-up. Ann Rheum Dis. 2008;67:1567–9.

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt J, Kermani TA, Bacani AK, Crowson CS, Matteson EL, Warrington KJ. Tumor necrosis factor inhibitors in patients with Takayasu arteritis: experience from a referral center with long-term followup. Arthritis Care Res. 2012;64:1079–83.

    Google Scholar 

  41. Comarmond C, Plaisier E, Dahan K, et al. Anti TNF-alpha in refractory Takayasu’s arteritis: cases series and review of the literature. Autoimmun Rev. 2012;11:678–84.

    Article  CAS  PubMed  Google Scholar 

  42. Mekinian A, Neel A, Sibilia J, et al. Efficacy and tolerance of infliximab in refractory Takayasu arteritis: French multicentre study. Rheumatology (Oxford). 2012;51:882–6.

    Article  CAS  PubMed  Google Scholar 

  43. Gudbrandsson B, Molberg O, Palm O. TNF inhibitors appear to inhibit disease progression and improve outcome in Takayasu arteritis; an observational, population-based time trend study. Arthritis Res Ther. 2017;19:99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Novikov PI, Smitienko IO, Sokolova MV, et al. Certolizumab pegol in the treatment of Takayasu arteritis. Rheumatology (Oxford). 2018;57:2101–5.

    Article  CAS  PubMed  Google Scholar 

  45. Nakaoka Y, Higuchi K, Arita Y, et al. Tocilizumab for the treatment of patients with refractory Takayasu arteritis. Int Heart J. 2013;54:405–11.

    Article  CAS  PubMed  Google Scholar 

  46. Mekinian A, Resche-Rigon M, Comarmond C, et al. Efficacy of tocilizumab in Takayasu arteritis: Multicenter retrospective study of 46 patients. J Autoimmun. 2018;91:55–60.

    Article  CAS  PubMed  Google Scholar 

  47. Nakaoka Y, Isobe M, Takei S, et al. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann Rheum Dis. 2018;77:348–54.

    Article  CAS  PubMed  Google Scholar 

  48. Terao C, Yoshifuji H, Nakajima T, Yukawa N, Matsuda F, Mimori T. Ustekinumab as a therapeutic option for Takayasu arteritis: from genetic findings to clinical application. Scand J Rheumatol. 2016;45:80–2.

    Article  CAS  PubMed  Google Scholar 

  49. Langford CA, Cuthbertson D, Ytterberg SR, et al. A randomized, double-blind trial of Abatacept (CTLA-4Ig) for the treatment of Takayasu arteritis. Arthritis Rheumatol (Hoboken NJ). 2017;69:846–53.

    Article  CAS  Google Scholar 

  50. Azak A, Huddam B, Kocak G, Kilic F, Kocak E, Duranay M. Takayasu arteritis and ulcerative colitis; coexistence or misdiagnosis? Sarcoidosis Vasc Diffuse Lung Dis. 2012;29:53–4.

    CAS  PubMed  Google Scholar 

  51. Watanabe R, Ishii T, Nakamura K, et al. Ulcerative colitis is not a rare complication of Takayasu arteritis. Mod Rheumatol. 2014;24:372–3.

    Article  PubMed  Google Scholar 

  52. Terao C, Matsumura T, Yoshifuji H, et al. Takayasu arteritis and ulcerative colitis: high rate of co-occurrence and genetic overlap. Arthritis Rheum (Hoboken NJ). 2015;67:2226–32.

    Article  Google Scholar 

  53. Lande A. Abdominal Takayasu’s aortitis, the middle aortic syndrome and atherosclerosis. A critical review. Int Angiol. 1998;17:1–9.

    CAS  PubMed  Google Scholar 

  54. Agard C, Barrier JH, Dupas B, et al. Aortic involvement in recent-onset giant cell (temporal) arteritis: a case-control prospective study using helical aortic computed tomodensitometric scan. Arthritis Rheum. 2008;59:670–6.

    Article  PubMed  Google Scholar 

  55. Espinoza JL, Ai S, Matsumura I. New insights on the pathogenesis of Takayasu arteritis: revisiting the microbial theory. Pathogens. 2018;7:73. https://doi.org/10.3390/pathogens7030073.

    Article  CAS  PubMed Central  Google Scholar 

  56. Jennete JC, Falk RJ, Bacon PA, et al. Revised international Chapel Hill consensus conference nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11.

    Article  Google Scholar 

  57. Fuchs M, Briel M, Daikeler T, et al. The impact of 18F-FDG PET on the management of patients with suspected large vessel vasculitis. Eur J Nucl Med Mol Imaging. 2012;39:344–53.

    Article  PubMed  Google Scholar 

  58. Papathanasiou ND, Du Y, Menezes LJ, et al. 18F-Fludeoxyglucose PET/CT in the evaluation of large-vessel vasculitis: diagnostic performance and correlation with clinical and laboratory parameters. Br J Radiol. 2012;85:e188–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jamar F, Buscombe J, Chiti A, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54:647–58.

    Article  PubMed  Google Scholar 

  60. Signore A, Glaudemans AWJM. The molecular imaging approach to image infections and inflammation by nuclear medicine techniques. Ann Nucl Med. 2011;25:681–700.

    Article  PubMed  Google Scholar 

  61. Schollhammer R, Schwartz P, Jullie ML, et al. 18F-FDG PET/CT imaging of popliteal vasculitis associated with polyarteritis nodosa. Clin Nucl Med. 2017;42:e385–7.

    PubMed  Google Scholar 

  62. De Geeter F, Gykiere P. (18)F-FDG PET imaging of granulomatosis with polyangiitis-Wegener’s syndrome. Hell J Nucl Med. 2016;19:53–6.

    PubMed  Google Scholar 

  63. Morita H, Yokoyama I, Yamada N, et al. Usefulness of 18FDG/13N-ammonia PET imaging for evaluation of the cardiac damage in Churg-Strauss syndrome. Eur J Nucl Med Mol Imaging. 2004;31:1218.

    Article  PubMed  Google Scholar 

  64. Elourimi G, Soussan M, Warzocha U, et al. Efficacy of tocilizumab highlighted by FDG-PET/CT in a patient with relapsing polychondritis-associated aortitis. Rheumatol Int. 2017;37:1931–5.

    Article  CAS  PubMed  Google Scholar 

  65. Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy. J Am Coll Cardiol. 1988;12:964–72.

    Article  CAS  PubMed  Google Scholar 

  66. Ohigashi H, Haraguchi G, Konishi M, et al. Improved prognosis of Takayasu arteritis over the past decade: comprehensive analysis of 106 patients. Circ J. 2012;76:1004–11.

    Article  PubMed  Google Scholar 

  67. Comarmond C, Cluzel P, Toledano D, et al. Findings of cardiac magnetic resonance imaging in asymptomatic myocardial ischemic disease in Takayasu arteritis. Am J Cardiol. 2014;113:881–7.

    Article  PubMed  Google Scholar 

  68. Mukhtyar C, Guillevin L, Cid MC, Dasgupta B, de Groot K, Gross W, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2009;68:318–23.

    Article  CAS  PubMed  Google Scholar 

  69. Mirouse A, Biard L, Comarmond C, et al. Overall survival and mortality risk factors in Takayasu’s arteritis: a multicenter study of 318 patients. J Autoimmun. 2019;96:35–9.

    Article  PubMed  Google Scholar 

  70. Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990;33:1129–34.

    Article  CAS  PubMed  Google Scholar 

  71. Tezuka D, Haraguchi G, Ishihara T, et al. Role of FDG PET-CT in Takayasu arteritis. sensitive detection of recurrences. J Am Coll Cardiol Img. 2012;5:422–9.

    Article  Google Scholar 

  72. Santhosh S, Mittal BR, Gayana S, et al. F-18 FDG PET/CT in the evaluation of Takayasu arteritis: an experience from the tropics. J Nucl Cardiol. 2014;21:993–1000.

    Article  PubMed  Google Scholar 

  73. Kerr GS, Ha llahan CW, Giordano J, et al. Takayasu arteritis. Ann Intern Med. 1994;120:919–29.

    Article  CAS  PubMed  Google Scholar 

  74. Han Q, Liang Q, Kang F, et al. An increased major vessel uptake by 18F-FDG-PET/CT in NIH criteria inactive patients with Takayasu’s arteritis. Clin Exp Rheumatol. 2018;36(Suppl 111(2)):88–92.

    PubMed  Google Scholar 

  75. Terao C, Matsumura T, Yoshifuji H, et al. Takayasu arteritis and ulcerative colitis: high rate of co- occurrence and genetic overlap. Arthritis Rheumatol. 2015;67:2226–32.

    Article  PubMed  Google Scholar 

  76. Soriano A, Pazzola G, Boiardi L, Casali M, Muratore F, Pipitone N, et al. Distribution patterns of 18F-fluorodeoxyglucose in large vessels of Takayasu's and giant cell arteritis using positron emission tomography. Clin Exp Rheumatol. 2018;36(Suppl 111(2)):99–106.

    PubMed  Google Scholar 

  77. Grayson PC, Maksimowicz-McKinnon K, Clark TM, Tomasson G, Cuthbertson D, Carette S, et al. Distribution of arterial lesions in Takayasu's arteritis and giant cell arteritis. Ann Rheum Dis. 2012;71(8):1329–34. https://doi.org/10.1136/annrheumdis-2011-200795.

    Article  PubMed  Google Scholar 

  78. Kerr GS, et al. Takayasu arteritis. Ann Intern Med. 1994;120:919–29.

    Article  CAS  PubMed  Google Scholar 

  79. Kobayashi Y, et al. Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med. 2005;46(6):917–22.

    PubMed  Google Scholar 

  80. Isobe M. Takayasu. Arteritis revisited: current diagnosis and treatment. Int J Cardiol. 2013;168(1):3–10.

    Article  PubMed  Google Scholar 

  81. Gomez L, et al. Effect of CRP value on 18F–FDG PET vascular positivity in Takayasu arteritis: a systematic review and per-patient based meta-analysis. Eur J Nucl Med Mol Imaging. 2018;45(4):575–81.

    Article  CAS  PubMed  Google Scholar 

  82. Tezuka D, et al. Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging. 2012;5:422–9.

    Article  PubMed  Google Scholar 

  83. Hommada M, Mekinian A, Brillet PY, et al. Aortitis in giant cell arteritis: diagnosis with FDG PET/CT and agreement with CT angiography. Autoimmun Rev. 2017;16(11):1131–7.

    Article  PubMed  Google Scholar 

  84. Hay B, Mariano-Goulart D, Bourdon A, et al. Diagnostic performance of 18F-FDG PET-CT for large vessel involvement assessment in patients with suspected giant cell arteritis and negative temporal artery biopsy. Ann Nucl Med. 2019;33(7):512–20.

    Article  PubMed  Google Scholar 

  85. Blockmans D, et al. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med. 2000;108:246–9.

    Article  CAS  PubMed  Google Scholar 

  86. Treglia G, et al. Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with large-vessel vasculitis: a systematic review. Clin Rheumatol. 2011;30:1265–75.

    Article  PubMed  Google Scholar 

  87. Lee KH, et al. The role of 18F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with takayasu arteritis. Arthritis Rheum. 2012;64:866–75.

    Article  PubMed  Google Scholar 

  88. Grayson PC, et al. 18 F-Fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheum. 2018;70:439–49.

    Article  Google Scholar 

  89. Danve A, O’DELL J. The role of 18F Fluorodeoxyglucose positron emission tomography scanning in the diagnosis and Management of Systemic Vasculitis. Int J Rheum Dis. 2015;18:714–24.

    Article  CAS  PubMed  Google Scholar 

  90. Kim J, Song H-C. Role of PET/CT in the evaluation of aortic disease. Chonnam Med J. 2018;54:143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schmidta WA, Blockmansb D, et al. Investigations in systemic vasculitis e the role ofimaging. Best Pract Res Clin Rheumatol. 2018;32:63–82.

    Article  Google Scholar 

  92. Martínez-Rodríguez I, Jiménez-Alonso M, Quirce R, et al. 18F-FDG PET/CT in the follow-up of large-vessel vasculitis: a study of 37 consecutive patients. Semin Arthritis Rheum. 2018;47(4):530–7.

    Article  PubMed  Google Scholar 

  93. Kubota K, Nakamoto Y, Tamaki N, et al. FDG-PET for the diagnosis of fever of unknown origin: a Japanese multi-center study. Ann Nucl Med. 2011;25:355–64.

    Article  PubMed  Google Scholar 

  94. Tokuda Y, Oshima H, Araki Y, et al. Detection of thoracic aortic prosthetic graft infection with 18F-Fluorodeoxyglucose positron emission tomography/computed tomography. Eur J Cardiothorac Surg. 2013;43:1183–7.

    Article  PubMed  Google Scholar 

  95. Mitra A, Pencharz D, Davis M, Wagner T. Determining the diagnostic value of 18F-Fluorodeoxyglucose positron emission/computed tomography in detecting prosthetic aortic graft infection. Ann Vasc Surg. 2018;53:78–85.

    Article  PubMed  Google Scholar 

  96. Keidar Z, Pirmisashvili N, Leiderman M, et al. 18F-FDG uptake in noninfected prosthetic vascular grafts: incidence, patterns, and changes over time. J Nucl Med. 2014;55:392–5.

    Article  CAS  PubMed  Google Scholar 

  97. Lee M, Ryu JS, Suh CH, et al. Intense 18F-FDG activity in aortoiliac bypass graft mimicking infection. Medicine. 2018;97(7):e9876.

    Article  PubMed  PubMed Central  Google Scholar 

Suggested Reading

  • Frary EC, Hess S, Gerke O, et al. 18F-fluoro-deoxy-glucose positron emission tomography combined with computed tomography can reliably rule-out infection and cancer in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis suspected of disease relapse. Medicine. 2017;96(30):e7613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofheinz K, Bertz S, Wacker J, Schett G, Manger B. Fever of unknown origin, giant cell arteritis, and aortic dissection. Z Rheumatol. 2017;76(1):83–6. https://doi.org/10.1007/s00393-016-0245-5.

    Article  CAS  PubMed  Google Scholar 

  • Kemna MJ, Vandergheynst F, Vöö S, Blocklet D, et al. Positron emission tomography scanning in anti-neutrophil cytoplasmic antibodies-associatedvasculitis. Medicine. 2015;94(20):e747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JH, Swanson JW. Giant cell arteritis. Headache. 2014;54(8):1273–89. https://doi.org/10.1111/head.12425.

    Article  PubMed  Google Scholar 

  • Soussan M, Abisror N, Abad S, et al. FDG-PET/CT in patients with ANCA-associated vasculitis: case-series and literature review. Autoimmun Rev. 2014;13:125–31.

    Article  PubMed  Google Scholar 

  • Watanabe S, Gono T, Nishina K, et al. Rheumatoid factor is correlated with disease activity and inflammatory markers in antineutrophil cytoplasmic antibody-associated vasculitis. BMC Immunol. 2017;18(1):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ukihide Tateishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuchiya, J. et al. (2020). FDG-PET/CT for Large-Vessel Vasculitis. In: Toyama, H., Li, Y., Hatazawa, J., Huang, G., Kubota, K. (eds) PET/CT for Inflammatory Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-0810-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0810-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0809-7

  • Online ISBN: 978-981-15-0810-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics