Skip to main content

A Review on Lung and Nodule Segmentation Techniques

  • Conference paper
  • First Online:
Advances in Data and Information Sciences

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 94))

Abstract

Computer Aided Diagnosis (CAD) systems for automatic detection of pulmonary diseases and lung cancer mainly depend on the segmentation of different pulmonary components like right and left lung lobes, airways, vessels, and nodules from the medical imaging modalities like CTs, MRIs, etc. Lung segmentation and nodule segmentation are the important steps to detect any lung related abnormalities. It requires many image processing operations to be performed on the medical images. Computed Tomography (CT) imaging is the most preferred modal because of its popularity, ease of use, and capability of showing different anatomical structures of thorax region. This review paper includes a study of various state of the art techniques explaining the methods applied on CT scans to find the ROIs along with their segmentation accuracies parameters in terms of similarity coefficient, mean error, and overlap ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lung Disease in India. 2017. https://www.worldlifeexpectancy.com/india-lung-disease.

  2. NCI online. (2016). Lung and Bronchus Cancer—Cancer Stat Facts, SEER Stat Fact Sheets. Lung and Bronchus Cancer.

    Google Scholar 

  3. El-Baz, A., et al. (2013). Computer-aided diagnosis systems for lung cancer: Challenges and methodologies. International Journal of Biomedical Imaging.

    Google Scholar 

  4. Da Nobrega, R. V. M., Rodrigues, M. B., & Filho, P. P. R. (2017, June). Segmentation and visualization of the lungs in three dimensions using 3D region growing and visualization toolkit in CT examinations of the chest. In Proceedings of IEEE Symposium on Computer based Medical System (Vol. 2017, pp. 397–402).

    Google Scholar 

  5. Yim, Y., Hong, H., & Shin, Y. G. (2005). Hybrid lung segmentation in chest CT images for computer-aided diagnosis. In Proceedings of 7th International Workshop on Enterprise Networking and Computing in Healthcare Industry Healthcom 2005 (pp. 378–383).

    Google Scholar 

  6. Hosseini-asl, E., Zurada, J. M., & El-baz, A. (2014). Lung segmentation based on nonnegative matrix factorization. Electrical and Computer Engineering Department, University of Louisville, Louisville, KY, USA. Bioengineering Department, University of Louisville, Louisville, KY, USA. Information Tech, no. 502 (pp. 877–881).

    Google Scholar 

  7. Hosseini-Asl, E., Zurada, J. M., Gimel-farb, G., & El-Baz, A. (2016). 3-D lung segmentation by incremental constrained nonnegative matrix factorization. IEEE Transactions on Biomedical Engineering, 63(5), 952–963.

    Article  Google Scholar 

  8. Reboucas Filho, P. P., Cortez, P. C., da Silva Barros, A. C., Victor, V. H., & Tavares, R. S. J. M. (2017). Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images. Medical Image Analysis, 35, 503–516.

    Article  Google Scholar 

  9. Sun, S., Bauer, C., & Beichel, R. (2012). Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach. IEEE Transactions on Medical Imaging, 31(2), 449–460.

    Article  Google Scholar 

  10. Mansoor, A., et al. (2014). Lung Segmentation, 33(12), 2293–2310.

    Google Scholar 

  11. Wei, J., & Li, G. (2014). Automated lung segmentation and image quality assessment for clinical 3-D/4-D-computed tomography. IEEE Journal of Translational Engineering in Health and Medicine, 2.

    Google Scholar 

  12. PedrosaReboucasFilho, P., Sarmento, R. M., Cortez, P. C., Carlos da Silva Barros, A., Hugo, V., & de Albuquerque, C. (2015). Adaptive crisp active contour method for segmentation and reconstruction of 3D lung structures. International Journal of Computer Applications, 111(4), 1–8.

    Google Scholar 

  13. Silva, S., Ferreira, N. C., & Caramelo, F. (2012). Dataset: 3D Automatic lung segmentation in low-dose CT (pp. 2–5).

    Google Scholar 

  14. Van Rikxoort, E. M., De Hoop, B., Viergever, M. A., Prokop, M., & Van Ginneken, B. (2009). Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Medical Physics, 36(7), 2934–2947.

    Article  Google Scholar 

  15. Noor, N. M., Than, J. C. M., Rijal, O. M., Anzidei, M., Saba, L., & Suri, J. S. (2015). Automatic lung segmentation using control feedback system: Morphology and texture paradigm.

    Google Scholar 

  16. Soliman, A., Khalifa, F., Alansary, A., Gimel’Farb, G., & El-Baz, A. (2013). Segmentation of lung region based on using parallel implementation of joint MGRF: Validation on 3D realistic lung phantoms. In Proceedings of International Symposium on Biomedical Imaging (pp. 864–867).

    Google Scholar 

  17. Abdollahi, B., Soliman, A., Civelek, A. C., Li, X. F., Gimel’Farb, G., & El-Baz, A. (2012). A novel gaussian scale space-based joint MGRF framework for precise lung segmentation. In Proceeding of International Conference on Image Processing ICIP (pp. 2029–2032).

    Google Scholar 

  18. Sahu, S. P., Agrawal, P., Londhe, N. D., & Verma,, S. (2017). A new hybrid approach using fuzzy clustering and morphological operations for lung segmentation in thoracic CT images. Biomedical and Pharmacology Journal, 10(4), 1949–1961.

    Google Scholar 

  19. Soliman, A., et al. (2017). Accurate lungs segmentation on CT chest images by adaptive appearance-guided shape modeling. IEEE Transactions on Medical Imaging, 36(1), 263–276.

    Article  MathSciNet  Google Scholar 

  20. Ng, C. R., et al. (2017). Preliminary 3D performance evaluation on automatic lung segmentation for interstitial lung disease using high resolution computed tomography (pp. 187–191).

    Google Scholar 

  21. Ren, Y. H., Sun, X. W., & Nie, S. D. (2010). A 3D segmentation method of lung parenchyma based on CT image sequences. In Proceeding of 2010 International Conference on Information, Networking and Automation ICINA (Vol. 2, pp. V2-332–V2-336).

    Google Scholar 

  22. S. P. Sahu, N. D. Londhe, and S. Verma, Án Automated System for the Detection of Lung Cancer in CT data at Early Stages: Review.

    Google Scholar 

  23. Chen, K., Li, B., Tian, L., Zhu, W., & Bao, Y. (2014). Vessel attachment nodule segmentation using integrated active contour model based on fuzzy speed function and shape-intensity joint Bhattacharya distance. Signal Processing, 103, 273–284. Oct.

    Article  Google Scholar 

  24. Kuhnigk, J.-., et al. (2006). Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Transactions on Medical Imaging, 25(4), 417–434.

    Google Scholar 

  25. Mukhopadhyay, S. (2016). A segmentation framework of pulmonary nodules in lung CT images. 86–103.

    Google Scholar 

  26. Wang, L., Lin, H., Huang, X., Wang, B., & Chen, Y. (2015). A 3d segmentation and visualization scheme for solid and non-solid lung lesions based on gaussian filtering regularized level set. In Proceeding of 2014 International Conference on 3D Vision Work, 3DV, 2014 (pp. 67–74).

    Google Scholar 

  27. Paraagios, N., & Deriche, R. (1999). Geodesic active contours for supervised texture segmentation. In Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 2, pp. 422–427).

    Google Scholar 

  28. Santos, A. M., De Carvalho Filho, A. O., Silva, A. C., De Paiva, A. C., Nunes, R. A., & Gattass, M. (2014). Automatic detection of small lung nodules in 3D CT data using gaussian mixture models, Tsallis entropy and SVM. Engineering Applications of Artificial Intelligence, 36, 27–39.

    Google Scholar 

  29. Nithila, E. E., & Kumar, S. S. (2016). Segmentation of lung nodule in CT data using active contour model and Fuzzy C-mean clustering. Alexandria Engineering Journal, 55(3), 2583–2588.

    Article  Google Scholar 

  30. Hao, R., Qiang, Y., & Yan, X. (2018). Juxta-Vascular pulmonary nodule segmentation in PET-CT imaging based on an LBF active contour model with information entropy and joint vector. Computational and Mathematical Methods in Medicine, 2018.

    Google Scholar 

  31. Chen, C. J., & Wang, Y. W.(2011). A preoperative 3D computer-aided diagnosis system for lung tumor. In Proceeding of 2011 5th International Conference on Genetic and Evolutionary Computing ICGEC 2011 (pp. 279–282).

    Google Scholar 

  32. Dehmeshki, J., Amin, H., Valdivieso, M., & Ye, X. (2008). Śegmentation of pulmonary nodules in thoracic CT scans: A region growing approach. IEEE Transactions on Medical Imaging, 27(4), 467–480.

    Article  Google Scholar 

  33. Oseas, A., et al. (2017). 3D shape analysis to reduce false positives for lung nodule detection systems. Medical and Biological Engineering and Computing, 55(8), 1199–1213.

    Article  Google Scholar 

  34. Zhu, Y., Tan, Y., Hua, Y., Wang, M., Zhang, G., & Zhang, J. (2010). Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. Journal of Digital Imaging, 23(1), 51–65.

    Article  Google Scholar 

  35. Diciotti, S., Lombardo, S., Falchini, M., Picozzi, G., & Mascalchi, M. (2011). Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis. 58(12), 3418–3428.

    Google Scholar 

  36. Muhammad, S., Muhammad, N., & Arfan, S. (2018). Lung nodule detection and classification based on geometric fit in parametric form and deep learning. Neural Computing and Applications, 3456789.

    Google Scholar 

  37. John, J., & Mini, M. G. (2016). Multilevel thresholding based segmentation and feature extraction for pulmonary nodule detection. Procedia Technology, 24, 957–963.

    Article  Google Scholar 

  38. Rendon-Gonzalez, E., & Ponomaryov, V. (2016). Automatic Lung nodule segmentation and classification in CT images based on SVM. In Proceeding of 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, MSMW 2016 (pp. 1–4).

    Google Scholar 

  39. Zhou, T., Lu, H., Zhang, J., & Shi, H. (2016). Pulmonary nodule detection model based on SVM and CT image feature-level fusion with rough sets. Biomed Research International, 2016.

    Google Scholar 

  40. Schilham, A. M., van Ginneken, B., & Loog, M. (2006). A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Medical Image Analysis, 10(2), 247–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawana Kamble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamble, B., Sahu, S.P., Doriya, R. (2020). A Review on Lung and Nodule Segmentation Techniques. In: Kolhe, M., Tiwari, S., Trivedi, M., Mishra, K. (eds) Advances in Data and Information Sciences. Lecture Notes in Networks and Systems, vol 94. Springer, Singapore. https://doi.org/10.1007/978-981-15-0694-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0694-9_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0693-2

  • Online ISBN: 978-981-15-0694-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics