Skip to main content

Abstract

Environmental pollution has become a serious concern in the current world, and therefore, its mitigation is urgent to safeguard the environment and public health. Bioremediation is identified as an eco-friendly and sustainable remediation technology to minimize and control environmental pollution. It uses an array of microbes/plants to degrade and detoxify environmental contaminants from contaminated matrix for environmental safety. However, its applicability gets limited by several drawbacks: the bioavailability of contaminants and its bioavailability to microbes, quick adaptation of the indigenous microorganisms for biodegradation of a particular contaminant and mass transfer of electron acceptors and nutrients to microorganisms responsible for biodegradation. These limitations can be overcome by coupling bioremediation with electrokinetics (EK), i.e. electrobioremediation technology where direct current is applied within subsurface porous media to induce specific transport phenomena. Electrobioremediation involves electrokinetic phenomena for the acceleration and orientation of transport of environmental pollutants and microbes for pollutant bioremediation. It has been identified as an emerging bioremediation technology; however, its applicability to contaminated sites is currently being under investigation. This chapter focuses on the general introduction and mechanism of electrobioremediation technology, electrobioremediation of contaminants, advantages and disadvantages and future prospects and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelaja O, Keshavarz T, Kyazze G (2014) Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell. Eng Life Sci 14:218–228

    Article  CAS  Google Scholar 

  • Adelaja O, Keshavarz T, Kyazze G (2015) The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J Hazard Mater 283:211–217

    Article  CAS  Google Scholar 

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation. Wiley

    Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1918

    Article  CAS  Google Scholar 

  • Arends JBA, Speeckaert J, Blondeel E, De Vrieze J, Boeckx P, Verstraete W, Rabaey K, Boon N (2014) Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl Microbiol Biotechnol 98(7):3205–3217

    Article  CAS  Google Scholar 

  • Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103(1):85–91

    Article  CAS  Google Scholar 

  • Azhar ATS, Nabila ATA, Nurshuhaila MS, Shaylinda MZN, Azim MAM (2016) Electromigration of contaminated soil by electro-bioremediation technique. IOP Conf Ser Mater Sci Eng 136:012023

    Article  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    Article  CAS  Google Scholar 

  • Barba S, Carvela M, Villaseñor J, Rodrigo MA, Cañizares P (2019) Fixed-bed biological barrier coupled with electrokinetics for the electrobioremediation of 2,4-dichlorophenoxyacetic acid polluted soil. J Chem Technol Biotechnol 94(8):2684–2692

    Article  CAS  Google Scholar 

  • Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (2011) Environmental microbiology: fundamentals and applications. Springer, New York

    Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G (2019a) Bioremediation of industrial waste for environmental safety: biological agents and methods for industrial waste management, 1st edn. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9

    Book  Google Scholar 

  • Bharagava RN, Saxena G (2019b) Progresses in bioremediation technologies for industrial waste treatment and management: challenges and future prospects. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety: biological agents and methods for industrial waste management, 1st edn. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_21

  • Bharagava RN, Saxena G, Mulla SI (2019) Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety: volume i: industrial waste and its management. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_1

    Chapter  Google Scholar 

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2010) Alternating current electrical field effects on lettuce (Lactuca sativa) growing in hydroponic culture with and without cadmium contamination. J Appl Electrochem 40(6):1217–1223

    Article  CAS  Google Scholar 

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83(3):318–326

    Article  CAS  Google Scholar 

  • Cameselle C, Chirakkara RA, Reddy KR (2013) Electrokinetic-enhanced phytoremediation of soils: status and opportunities. Chemosphere 93(4):626–636

    Article  CAS  Google Scholar 

  • Cang L, Zhou D-M, Alshawabkeh AN, Chen H-F (2007) Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community. J Hazard Mater 142(1-2):111–117

    Article  CAS  Google Scholar 

  • Cang L, Wang Q–Y, Zhou D–M, Xu H (2011) Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep Purif Technol 79(2):246–253

    Article  CAS  Google Scholar 

  • Cang L, Zhou D-M, Wang Q-Y, Fan G-P (2012) Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochim Acta 86:41–48

    Article  CAS  Google Scholar 

  • Careghini A, Saponaro S, Sezenna E, Daghio M, Franzetti A, Gandolfi I, Bestetti G (2015) Lab-scale tests and numerical simulations for in situ treatment of polluted groundwater. J Hazard Mater 287:162–170

    Article  CAS  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chandrasekhar K, Venkata Mohan S (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Bioresour Technol 110:517–525

    Article  CAS  Google Scholar 

  • Cruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli SK, Zanaroli G, Petrangeli Papini M, Rossetti S, Aulenta F (2015) The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front Microbiol 6:881

    Article  Google Scholar 

  • Da Rocha UN, Tótola MR, Pessoa DMM, Júnior JTA, Neves JCL, Borges AC (2009) Mobilisation of bacteria in a fine-grained residual soil by electrophoresis. J Hazard Mater 161(1):485–491

    Article  CAS  Google Scholar 

  • Daghio M, Tatangelo V, Franzetti A, Gandolfi I, Papacchini M, Careghini A, Sezenna E, Saponaro S, Bestetti G (2015) Hydrocarbon degrading microbial communities in bench scale aerobic biobarriers for gasoline contaminated groundwater treatment. Chemosphere 130:34–39

    Google Scholar 

  • Daghio M, Vaiopoulou E, Patil SA, Suárez-Suárez A, Head IM, Franzetti A, Rabaey K (2016) Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. 1033 Appl Environ Microbiol 82:297–307

    Article  CAS  Google Scholar 

  • DeFlaun MF, Condee CW (1997) Electrokinetic transport of bacteria. J Hazard Mater 55(1–3):263–277

    Article  CAS  Google Scholar 

  • Dutta P, Rabaey K, Yuan Z, Keller J (2008) Spontaneous electrochemical removal of aqueous sulfide. Water Res 42(20):4965–4975

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  CAS  Google Scholar 

  • Friman H, Schechter A, Nitzan Y, Cahan R (2012) Effect of external voltage on Pseudomonas putida F1 in a bio electrochemical cell using toluene as sole carbon and energy source. Microbiology 158:414–423

    Article  CAS  Google Scholar 

  • Friman H, Schechter A, Nitzan Y, Cahan R (2013) Phenol degradation in bio-electrochemical cells. Int Biodeterior Biodegrad 84:155–160

    Article  CAS  Google Scholar 

  • Gill RT, Harbottle MJ, Smith JWN, Thornton SF (2014) Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. Chemosphere 107:31–42

    Article  CAS  Google Scholar 

  • Gray ND, Sherry A, Hubert C, Dolfing J, Head IM (2010) Methanogenic degradation of petroleum hydrocarbons in subsurface environments. remediation, heavy oil formation, and energy recovery Adv Appl Microbiol 72:137–161

    CAS  Google Scholar 

  • Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro A, Thornton R, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999a) The lasagna technology for in situ soil remediation. 1. Small field test. Environ Sci Technol 33:1086–1091

    Article  CAS  Google Scholar 

  • Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro AM, Sivavec TM, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999b) The lasagna technology for in situ soil remediation. 2. Large field test. Environ Sci Technol 33:1092–1099

    Article  CAS  Google Scholar 

  • Ho SV, Sheridan PW, Athmer CJ, Heitkamp MA, Brackin JM, Weber D, Brodsky PH (2002) Integrated in situ soil remediation technology: the lasagna process. Environ Sci Technol 29(10):2528–2534

    Article  Google Scholar 

  • Huang D-Y, Zhou S-G, Chen Q, Zhao B, Yuan Y, Zhuang L (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172:647–653

    Article  CAS  Google Scholar 

  • Huang D, Guo S, Li T, Wu B (2013) Coupling interactions between electrokinetics and bioremediation for pyrene removal from soil under polarity reversal conditions. CLEAN – Soil, Air, Water 41(4):383–389

    Article  CAS  Google Scholar 

  • Kaku N, Yonezawa N, Kodama Y, Watanabe K (2008) Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79:43–49

    Article  CAS  Google Scholar 

  • Kanagasabi S, Kang YL, Manickam M, Ibrahim S, Pichiah S (2012) Intimate coupling of electro and biooxidation of tannery wastewater. Desalin Water Treat 51:34–36

    Google Scholar 

  • Ko S-O, Schlautman MA, Carraway ER (2000) Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ Sci Technol 34(8):1535–1541

    Article  CAS  Google Scholar 

  • Lee H-S, Lee K (2001) Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics. J Microb Biotechnol 11:1038–1045

    CAS  Google Scholar 

  • Lee K-Y, Kim K-W (2010) Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents. Environ Sci Technol 44(24):9482–9487

    Article  CAS  Google Scholar 

  • Li W-W, Yu H-Q (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33:1–12

    Article  CAS  Google Scholar 

  • Li XY, Ding F, Lo PSY, Sin SHP (2002) Electrochemical disinfection of saline wastewater effluent. J Environ Eng 128(8):697–704

    Article  CAS  Google Scholar 

  • Li X, Wang X, Zhang Y, Cheng L, Liu J, Li F, Gao B, Zhou Q (2014) Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Adv 4(104):59803–59808

    Article  CAS  Google Scholar 

  • Lin C-W, Wu C-H, Chiu Y-H, Tsai S-L (2014) Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125:30–35

    Article  CAS  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690

    Article  CAS  Google Scholar 

  • Lohner ST, Katzoreck D, Tiehm A (2008) Electromigration of microbial electron acceptors and nutrients: (I) Transport in synthetic media. J Environ Sci Health A 43(8):913–921

    Article  CAS  Google Scholar 

  • Lohner ST, Tiehm A (2009) Application of electrolysis to stimulate microbial reductive pce dechlorination and oxidative VC biodegradation. Environ Sci Technol 43(18):7098–7104

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508

    Article  CAS  Google Scholar 

  • Lu L, Huggins T, Jin S, Zuo Y, Ren ZJ (2014a) Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48(7):4021–4029

    Article  CAS  Google Scholar 

  • Lu L, Yazdi H, Jin S, Zuo Y, Fallgren PH, Ren ZJ (2014b) Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Hazard Mater 274:8–15

    Article  CAS  Google Scholar 

  • Luo Q, Zhang X, Wang H, Qian Y (2005) The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil. J Hazard Mater 121(1-3):187–194

    Google Scholar 

  • Maillacheruvu KY, Chinchoud PR (2011) Electrokinetic transport of aerobic microorganisms under low-strength electric fields. J Environ Sci Health A 46(6):589–595

    Article  CAS  Google Scholar 

  • Mao X, Wang J, Ciblak A, Cox EE, Riis C, Terkelsen M, Gent DB, Alshawabkeh AN (2012) Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. J Hazard Mater 213-214:311–317

    Article  CAS  Google Scholar 

  • Mao D, Lu L, Revil A, Zuo Y, Hinton J, Ren ZJ (2016) Geophysical monitoring of hydrocarbon-contaminated soils remediated with a bioelectrochemical system. Environ Sci Technol 50:8205–8213

    Article  CAS  Google Scholar 

  • Maszenan AM, Liu Y, Ng WJ (2011) Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol Adv 29(1):111–123

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1,2- dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol 35:516–521

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Mena E, Rubio P, Cañizares P, Villaseñor J, Rodrigo MA (2012) Electrokinetic transport of diesel-degrading microorganisms through soils of different textures using electric fields. J Environ Sci Health A 47(2):274–279

    Article  CAS  Google Scholar 

  • Mohan SV, Chandrasekhar K (2011) Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresour Technol 102(20):9532–9541

    Article  CAS  Google Scholar 

  • Morris JM, Jin S (2008) Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. J Environ Sci Health A 43(1):18–23

    Article  CAS  Google Scholar 

  • Morris JM, Jin S (2012) Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater 213–214:474–477

    Article  CAS  Google Scholar 

  • Morris JM, Jin S, Crimi B, Pruden A (2009) Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J 146(2):161–167

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    Article  CAS  Google Scholar 

  • Pazos M, Plaza A, Martín M, Lobo MC (2012) The impact of electrokinetic treatment on a loamy-sand soil properties. Chem Eng J 183:231–237

    Article  CAS  Google Scholar 

  • Pham H, Boon N, Marzorati M, Verstraete W (2009) Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res 43:2936–2946

    Article  CAS  Google Scholar 

  • Rabaey K, Keller J (2008) Microbial fuel cell cathodes: from bottleneck to prime opportunity? Water Sci Technol 57(5):655–659

    Article  CAS  Google Scholar 

  • Rakoczy J, Feisthauer S, Wasmund K, Bombach P, Neu TR, Vogt C, Richnow HH (2013) Benzene and sulfide removal from groundwater treated in a microbial fuel cell. Biotechnol Bioeng 110:3104–3113

    Article  CAS  Google Scholar 

  • Rivett MO, Thornton SF (2008) Monitored natural attenuation of organic contaminants in groundwater: principles and application. Proc Inst Civ Eng Water Manage 161(6):381–392

    Article  Google Scholar 

  • Saichek RE, Reddy KR (2003) Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 51(4):273–287

    Article  CAS  Google Scholar 

  • Saichek RE, Reddy KR (2005) Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. J Environ Eng Sci 4(5):327–339

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2016) Ram Chandra: advances in biodegradation and bioremediation of industrial waste. Clean Techn Environ Policy 18:979–980

    Article  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–56

    Google Scholar 

  • Saxena G, Bharagava RN (2019) Bioremediation of industrial waste for environmental safety: industrial waste and its management, 1st edn. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7

    Book  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019a) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24

  • Saxena G, Kishor R, Purchase D, Bharagava RN (2019b) Chandra R, Dubey NK, Kumar V: Phytoremediation of environmental pollutants. Environ Earth Sci 78(14)

    Google Scholar 

  • Schamphelaire LDE, Van den Bossche L, Dang HS, Höfte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231A

    Article  CAS  Google Scholar 

  • Shantaram A, Beyenal H, Veluchamy RRA, Lewandowski Z (2005) Wireless Sensors Powered by Microbial Fuel Cells. Environ Sci Technol 39(13):5037–5042

    Article  CAS  Google Scholar 

  • Shi L, Müller S, Loffhagen N, Harms H, Wick LY (2007) Activity and viability of polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LB126 in a DC-electrical field typical for electrobioremediation measures. Microb Biotechnol 1(1):53–61. https://doi.org/10.1111/j.1751-7915.2007.00006.x

  • Simoni SF, Schäfer A, Harms H, Zehnder AJB (2001) Factors affecting mass transfer limited biodegradation in saturated porous media. J Contam Hydrol 50(1–2):99–120

    Article  CAS  Google Scholar 

  • Sturman PJ, Stewart PS, Cunningham AB, Bouwer EJ, Wolfram JH (1995) Engineering scale-up of in situ bioremediation processes: a review. J Contam Hydrol 19(3):171–203

    Article  CAS  Google Scholar 

  • Suni S, Malinen E, Kosonen J, Silvennoinen H, Romantschuk M (2007) Electrokinetically enhanced bioremediation of creosote-contaminated soil: laboratory and field studies. J Environ Sci Health A 42(3):277–287

    Article  CAS  Google Scholar 

  • Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186(2–3):1271–1276

    Article  CAS  Google Scholar 

  • Tiehm A, Lohner ST, Augenstein T (2009) Effects of direct electric current and electrode reactions on vinyl chloride degrading microorganisms. Electrochim Acta 54(12):3453–3459

    Article  CAS  Google Scholar 

  • Tiehm A, Augenstein T, Ilieva D, Schell H, Weidlich C, Mangold K-M (2010) Bio-electro-remediation: electrokinetic transport of nitrate in a flow-through system for enhanced toluene biodegradation. J Appl Electrochem 40(6):1263–1268

    Article  CAS  Google Scholar 

  • Trombly J (2008) Electrochemical remediation takes to the field. Environ Sci Technol 28(6):289A–291A

    Article  Google Scholar 

  • Tront JM, Fortner JD, Plötze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24(4):586–590

    Article  CAS  Google Scholar 

  • Venkidusamy K, Megharaj M, Marzorati M, Lockington R, Naidu R (2016) Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with precultured anodes. Sci Total Environ 539:61–69

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation — critical overview. Sci Total Environ 289(1–3):97–121

    Article  CAS  Google Scholar 

  • Wang AJ, Cheng HY, Liang B, Ren NQ, Cui D, Lin N, Kim BH, Rabaey K (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45:10186–10193

    Article  CAS  Google Scholar 

  • Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ (2015) Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 33:317–334

    Article  CAS  Google Scholar 

  • Weelink SAB, van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Biotechnol 9(4):359–385

    Article  CAS  Google Scholar 

  • Wei M, Harnisch F, Vogt C, Ahlheim J, Neu TR, Richnow HH (2015) Harvesting electricity from benzene and ammonium-contaminated groundwater using a microbial fuel cell with an aerated cathode. RSC Adv 5(7):5321–5330

    Article  CAS  Google Scholar 

  • West KA, Johnson DR, Hu P, DeSantis TZ, Brodie EL, Lee PKH, Feil H, Andersen GL, Zinder SH, Alvarez-Cohen L (2008) Comparative genomics of “Dehalococcoides ethenogenes” 195 and an enrichment culture containing Unsequenced “Dehalococcoides” strains. Appl Environ Microbiol 74(11):3533–3540

    Article  CAS  Google Scholar 

  • Wick LY, Mattle PA, Wattiau P, Harms H (2004) Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environ Sci Technol 38(17):4596–4602

    Article  CAS  Google Scholar 

  • Wick LY, Shi L, Harms H (2007) Electro-bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. Electrochim Acta 52(10):3441–3448

    Article  CAS  Google Scholar 

  • Williams KH, Nevin KP, Franks A, Englert A, Long PE, Lovley DR (2010) Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation. Environ Sci Technol 44(1):47–54

    Article  CAS  Google Scholar 

  • Wu X, Alshawabkeh AN, Gent DB, Larson SL, Davis JL (2007) Lactate transport in soil by DC fields. J Geotech Geoenviron 133(12):1587–1596

    Article  CAS  Google Scholar 

  • Wu MZ, Reynolds DA, Fourie A, Thomas DG (2013) Optimal field approaches for electrokinetic in situ oxidation remediation. Ground Water Monit Remediat 33(1):62–74

    Article  CAS  Google Scholar 

  • Xu W, Wang C, Liu H, Zhang Z, Sun H (2010) A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil. J Hazard Mater 184(1–3):798–804

    Article  CAS  Google Scholar 

  • Yan F, Reible D (2015) Electro-bioremediation of contaminated sediment by electrode enhanced capping. J Environ Manag 155:154–161

    Article  CAS  Google Scholar 

  • Yan Z, Song N, Cai H, Tay J-H, Jiang H (2012) Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J Hazard Mater 199–200:217–225

    Article  CAS  Google Scholar 

  • Yan Z, Jiang H, Cai H, Zhou Y, Krumholz LR (2015) Complex interactions between the macrophyte acorus calamus and microbial fuel cells during pyrene and benzo[a]pyrene degradation in sediments. Sci Rep 5(1)

    Google Scholar 

  • Yuan Y, Guo S-H, Li F-M, Li T-T (2013) Effect of an electric field on n-hexadecane microbial degradation in contaminated soil. Int Biodeterior Biodegr 77:78–84

    Article  CAS  Google Scholar 

  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12(4):1011–1020

    Article  CAS  Google Scholar 

  • Zhang T, Bain TS, Barlett MA, Dar SA, Snoeyenbos-West OL, Nevin KP, Lovley DR (2014) Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1. Microbiology 160(Pt_1):123–129

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Li X, Cheng L, Wan L, Zhou Q (2015) Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Pollut Res 22(3):2335–2341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, G., Thakur, I.S., Kumar, V., Shah, M.P. (2020). Electrobioremediation of Contaminants: Concepts, Mechanisms, Applications and Challenges. In: Shah, M., Banerjee, A. (eds) Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant. Springer, Singapore. https://doi.org/10.1007/978-981-15-0497-6_14

Download citation

Publish with us

Policies and ethics