Skip to main content

Survey of Methods for Time Series Symbolic Aggregate Approximation

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1058))

Abstract

Time series analysis is widely used in the fields of finance, medical, and climate monitoring. However, the high dimension characteristic of time series brings a lot of inconvenience to its application. In order to solve the high dimensionality problem of time series, symbolic representation, a method of time series feature representation is proposed, which plays an important role in time series classification and clustering, pattern matching, anomaly detection and others. In this paper, existing symbolization representation methods of time series were reviewed and compared. Firstly, the classical symbolic aggregate approximation (SAX) principle and its deficiencies were analyzed. Then, several SAX improvement methods, including aSAX, SMSAX, ESAX and some others, were introduced and classified; Meanwhile, an experiment evaluation of the existing SAX methods was given. Finally, some unresolved issues of existing SAX methods were summed up for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Annam, J.R., Surampudi, B.R.: Inter-patient heart-beat classification using complete ECG beat time series by alignment of R-peaks using SVM and decision rule. In: International Conference on Signal & Information Processing. (2017)

    Google Scholar 

  2. Yang, P., Dumont, G., Ansermino, J.M.: Adaptive change detection in heart rate trend monitoring in anesthetized children. IEEE Trans. Biomed. Eng. 53(11), 2211–2219 (2006)

    Article  Google Scholar 

  3. Rathnayaka, R.M.K.T., Seneviratne, D.M.K.N., Wei, J., Arumawadu, H.I.: A hybrid statistical approach for stock market forecasting based on artificial neural network and ARIMA time series models. In: International Conference on Behavioral (2015)

    Google Scholar 

  4. Golmohammadi, K., Zaiane, O.R.: Time series contextual anomaly detection for detecting market manipulation in stock market. In: IEEE International Conference on Data Science & Advanced Analytics (2015)

    Google Scholar 

  5. Papagiannopoulou, C., Decubber, S., Miralles, D.G., Demuzere, M., Verhoest, Niko E.C., Waegeman, W.: Analyzing granger causality in climate data with time series classification methods. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 15–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_2

    Chapter  Google Scholar 

  6. Itoh, N., Kurths, J.: Change-point detection of climate time series by nonparametric method. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 1, pp. 445–448 (2010)

    Google Scholar 

  7. Xing, W., Lin, J., Patel, N., Braun, M.: A self-learning and online algorithm for time series anomaly detection, with application in CPU manufacturing. In: ACM International on Conference on Information & Knowledge Management (2016)

    Google Scholar 

  8. Feng, C., Li, T., Chana, D.: Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks. In: IEEE/IFIP International Conference on Dependable Systems & Networks (2017)

    Google Scholar 

  9. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  10. Chan, K.P., Fu, W.C.: Efficient time series matching by wavelets. In: International Conference on Data Engineering (1999)

    Google Scholar 

  11. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 289–296. IEEE (2001)

    Google Scholar 

  12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  13. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: ACM Sigmod Workshop on Research Issues in Data Mining & Knowledge Discovery (2003)

    Google Scholar 

  14. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. ACM (1994)

    Google Scholar 

  15. Hugueney, B.: Adaptive segmentation-based symbolic representations of time series for better modeling and lower bounding distance measures. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 545–552. Springer, Heidelberg (2006). https://doi.org/10.1007/11871637_54

    Chapter  Google Scholar 

  16. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM SIGMOD Rec. 30(2), 151–162 (2001)

    Article  Google Scholar 

  17. Pham, N.D., Le, Q.L., Dang, T.K.: Two novel adaptive symbolic representations for similarity search in time series databases. In: 2010 12th International Asia-Pacific Web Conference, pp. 181–187. IEEE (2010)

    Google Scholar 

  18. Pham, N.D., Le, Q.L., Dang, T.K.: HOT aSAX: a novel adaptive symbolic representation for time series discords discovery. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS (LNAI), vol. 5990, pp. 113–121. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12145-6_12

    Chapter  Google Scholar 

  19. 陈湘涛, 李明亮, 陈玉娟: 基于分割模式的时间序列矢量符号化算法. 计算机工程 37(4), 55–57 (2011)

    Google Scholar 

  20. Muhammad Fuad, M.M., Marteau, P.-F.: Enhancing the symbolic aggregate approximation method using updated lookup tables. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS (LNAI), vol. 6276, pp. 420–431. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15387-7_46

    Chapter  Google Scholar 

  21. Lkhagva, B., Suzuki, Y., Kawagoe, K.: Extended SAX: extension of symbolic aggregate approximation for financial time series data representation. DEWS2006 4A-i8 7 (2006)

    Google Scholar 

  22. Zhong, Q., Cai, Z.: Symbolic algorithm for time series data based on statistic feature. Chin. J. Comput. 31(10), 1857–1864 (2008)

    Article  MathSciNet  Google Scholar 

  23. 李海林, 郭崇慧: 基于形态特征的时间序列符号聚合近似方法. 模式识别与人工智能 24(5), 665–672 (2011)

    Google Scholar 

  24. Sun, Y., Li, J., Liu, J., Sun, B., Chow, C.: An improvement of symbolic aggregate approximation distance measure for time series. Neurocomputing 138, 189–198 (2014)

    Article  Google Scholar 

  25. 季海娟, 周从华, 刘志锋: 一种基于始末距离的时间序列符号聚合近似表示方法. 计算机科学 45(06), 222–227 (2018)

    Google Scholar 

  26. 李海林, 梁叶: 基于数值符号和形态特征的时间序列相似性度量方法. 控制与决策 32(3), 451–458 (2017)

    Google Scholar 

  27. Dau, H., et al.: The UCR Time Series Classification Archive (2018). https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China [grant numbers 61602279, 61472229]; Shandong Province Postdoctoral Innovation Project [grant number 201603056]; the Sci. & Tech. Development Fund of Shandong Province of China [grant number 2016ZDJS02A11 and Grant ZR2017MF027]; the SDUST Research Fund [grant number 2015TDJH102]; and the Fund of Oceanic telemetry Engineering and Technology Research Center, State Oceanic Administration (grant number 2018002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Lu, F., Cui, M., Bao, Y. (2019). Survey of Methods for Time Series Symbolic Aggregate Approximation. In: Cheng, X., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2019. Communications in Computer and Information Science, vol 1058. Springer, Singapore. https://doi.org/10.1007/978-981-15-0118-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0118-0_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0117-3

  • Online ISBN: 978-981-15-0118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics