Skip to main content

Magnetic Resonance Spectroscopic Analysis in Brain Tumors

  • Chapter
  • First Online:
Medical Imaging Methods

Abstract

Magnetic resonance spectroscopy (MRS) can be applied for analyzing and evaluating the treatment response to human brain tumors. It is a valuable and noninvasive technique for identifying metabolites including choline-containing compounds, N-acetyl aspartate, lactate, and creatine/phosphocreatine. This technique provides important clinical information allowing more specific diagnosis, including differentiating the brain tumors from abscesses, identifying the tumoral characteristic of the studied lesion, better characterizing brain tumors, and establishing an extended local assessment of morphological abnormalities detected in conventional magnetic resonance imaging (MRI). In this chapter, MRS (single- and multi-voxel) techniques in diagnosis, follow-up and analysis of brain tumors, and grading of primary brain tumors are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:174–80.

    Article  Google Scholar 

  2. Moriarty TM, Loeffler JS, Black PM, Shrieve DC, Wen PY, Fine HA, et al. Long term follow-up of patients treated with stereotactic radiosurgery for single or multiple brain metastases. In: Kondziolka D, editor. Radiosurgery, vol. 1. Basel, Switzerland: Karger; 1995. p. 83–91.

    Google Scholar 

  3. Leibel SA, Scott C, Loeffler J-S. Contemporary approaches to the treatment of malignant gliomas with radiation therapy. Semin Oncol. 1994;21:198–219.

    Google Scholar 

  4. Russell DS, Rubenstein LJ. Pathology of tumors of the nervous system. 5th ed. London: Lippincott, Williams and Wilkins; 1989.

    Google Scholar 

  5. Kleihues P, Burger PC, Scheithauer B-W. Histological typing of tumors of the central nervous system. 2nd ed. Berlin: Springer; 1993.

    Book  Google Scholar 

  6. Dean BL, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, et al. Gliomas: classification with MR imaging. Radiology. 1990;174:411–5.

    Article  Google Scholar 

  7. Earnest F, Kelly P, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, et al. cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology. 1988;166:823–7.

    Article  Google Scholar 

  8. Janus TJ, Kim EE, Tilbury R, Bruner JM, Yung W-K-A. Use of {18F} fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors. Ann Neurol. 1993;33:540–8.

    Article  Google Scholar 

  9. Glantz M, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, et al. Jr. identification of early recurrence of primary central nervous system tumors by {18F} fluorodeoxyglucose positron emission tomography. Ann. Neuro. 1991;29:347–55.

    Google Scholar 

  10. G DC. Positron emission tomography using F-18-fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Investig Radiol. 1986;22:360–71.

    Google Scholar 

  11. Pardo FS, Aronen HJ, Kennedy D, Moulton G, Paiva K, Okunieff P, et al. Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant gliomas. Int J Rad Oncol Biol Phys. 1994;30:663–9.

    Article  Google Scholar 

  12. Wenz F, Rempp K, Brix G, Hess T, Weisser G, Debus J, et al. Radiation induced rCBV changes of low grade astrocytomas and normal brain tissue: International Society of Magnetic Resonance in Medicine 2nd annual meeting; 1994. p. 667.

    Google Scholar 

  13. Housni A, Boujraf S. Magnetic resonance spectroscopy in the diagnosis and follow-up of brain tumors. J Biomed Sci Eng. 2012;5:853–61.

    Article  Google Scholar 

  14. Brandão LA, Castillo M. Adult brain tumors. Clinical applications of magnetic resonance spectroscopy. Magn Reson Imaging Clin N Am. 2016;24:781–809.

    Article  Google Scholar 

  15. Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol. 2009;64:12–21.

    Article  Google Scholar 

  16. Buonocore MH, Maddock R-J. Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Rev Neurosci. 2015;26:609–32.

    Article  Google Scholar 

  17. Bottomley P-A. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 1987;508:333–48.

    Article  ADS  Google Scholar 

  18. Frahm J. Localized proton spectroscopy using stimulated echoes. J Magn Reson. 1987;72:502–8.

    ADS  Google Scholar 

  19. Horská A, Barker P-B. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20:293–310.

    Article  Google Scholar 

  20. Hourani R, Horská A, Albayram S, Brant LJ, Melhem E, Cohen KJ, et al. Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging. 2006;23:99–107.

    Article  Google Scholar 

  21. Barker P-B. N-acetyl aspartate--a neuronal marker? Ann Neurol. 2001;49:423–4.

    Article  Google Scholar 

  22. Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2003;49:223–32.

    Article  Google Scholar 

  23. Lai PH, Ho JT, Chen WL, Hsu SS, Wang JS, Pan HB, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23:1369–77.

    Google Scholar 

  24. Graves EE, Nelson SJ, Vigneron DB, Chin C, Verhey L, McDermott M, et al. A preliminary study of the prognostic value of proton magnetic resonance spectroscopic imaging in gammaknife radiosurgery of recurrent malignant gliomas. Neurosurgery. 2000;46:319–26.

    Article  Google Scholar 

  25. Kimura T, Sako K, Gotoh T, Tanaka K, Tanaka T. In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed. 2001;14:339–49.

    Article  Google Scholar 

  26. Omer MAA, A-B-A E. Quantitative diagnosis of brain tumors using magnetic resonance spectroscopy relative to analogue images. Clin Med Imag Int J. 2018;1:27–30.

    Google Scholar 

  27. Ferraz-Filho JRL, Santana-Netto PV, Rocha-Filho JA, Sgnolf A, Mauad F, Sanches R-A. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions. Arq Neuropsiquiatr. 2009;67:250–3.

    Article  Google Scholar 

  28. Chang L, Mc Bride D, Miller BL, Cornford M, Booth RA, Buchthal SD, et al. Localized in vivo 1H magnetic resonance spectroscopy and in vitro analyses of heterogeneous brain tumors. J Neuroimaging. 1995;5:157–63.

    Article  Google Scholar 

  29. Vogl TJ, Friebe CE, Balzer T, Mack MG, Steiner S, Schedel H, et al. Diagnosis of cerebral metastasis with standard dose gadobutrol versus a high dose protocol. Intraindividual evaluation of a phase II high dose study. Radiologe. 1995;35:508–16.

    Google Scholar 

  30. Ibrahim Hamed SA, Ayad C-E. Diagnostic value of MRI and MRS in characterization of brain tumors. IOSR J Dent Med Sci. 2017;16:72–80.

    Google Scholar 

  31. Oshiro S, Tsugu H, Komatsu F, Abe H, Onishi H, Ohmura T, et al. Quantitative assessment of gliomas by proton magnetic resonance spectroscopy. Anticancer Res. 2007;27:3757–63.

    Google Scholar 

  32. Nelson S-J. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol Cancer Ther. 2003;2:497–507.

    Google Scholar 

  33. Sjøbakk TE, Lundgren S, Kristoffersen A, Singstad T, Svarliaunet AJ, Sonnewald U, et al. Clinical 1H magnetic resonance spectroscopy of brain metastases at 1.5T and 3T. Acta Radiol. 2006;47:501–8.

    Article  Google Scholar 

  34. Al-Okaili RN, Krejza J, Woo JH, Wolf RL, O'Rourke DM, Judy KD, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy–initial experience. Radiology. 2007;243:539–50.

    Article  Google Scholar 

  35. Kousi E, Tsougos I, Tsolaki E, Fountas KN, Theodorou K, Fezoulidis I, et al. Spectroscopic evaluation of glioma grading at 3T: the combined role of short and long TE. Sci World J. 2012;2012:1.

    Google Scholar 

  36. Zou QG, Xu HB, Liu F, Guo W, Kong XC, Wu Y. In the assessment of supratentorial glioma grade: the combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging. Clin Radiol. 2011;66:953–60.

    Article  Google Scholar 

  37. Majós C, Julià-Sapé M, Alonso J, Serrallonga M, Aguilera C, Acebes JJ, et al. Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol. 2004;25:1696–704.

    Google Scholar 

  38. Kim JH, Chang KH, Na DG, Song IC, Kwon BJ, Han MH, et al. 3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. AJNR Am J Neuroradiol. 2006;27:1412–8.

    Google Scholar 

  39. Naser RKA, Hassan AAK, Shabana AM, Omar N-N. Role of magnetic resonance spectroscopy in grading of primary brain tumors. Egypt J Radiol Nucl Med. 2016;47:577–84.

    Article  Google Scholar 

  40. Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, et al. Accurate non-invasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med. 1996;2:323–5.

    Article  Google Scholar 

  41. Graves EE, Pirzkall A, Nelson SJ, Verhey L, Larson D. Registration of magnetic resonance spectroscopic imaging to computed tomography for radiotherapy treatment planning. Med Phys. 2001;28:2489–96.

    Article  Google Scholar 

  42. Zaccagna F, Grist JT, Deen SS, Woitek R, Lechermann LM, McLean MA, et al. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol. 2018;91:20170688.

    Article  Google Scholar 

  43. Heesters MAAM, Kamman RL, Mooyaart EL, Go K-G. Localized proton spectroscopy of in operable brain tumors. Response to radiation therapy. J Neuro-Oncol. 1993;17:27–35.

    Article  Google Scholar 

  44. Usenius J-P, Vaino P, Hernesniemi J, Kauppinen R-A. Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem. 1994;63:1538–43.

    Article  Google Scholar 

  45. McBride DQ, Miller BL, Nikas DL, Buchthal S, Chang L, Chiang F, et al. Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol. 1995;44:137–44.

    Article  Google Scholar 

  46. Usenius JP, Kauppinen RA, Vaino P, Hernesniemi JA, Vapalahti MP, Paljarvi LA, et al. Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr. 1994;18:705–13.

    Article  Google Scholar 

  47. Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter trial. J Neurosurg. 1996;84:449–58.

    Article  Google Scholar 

  48. Sijens PE, Kopp MV, Brunetti A, Wicklow K, Alfano B, Bachert P, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med. 1995;33:818–26.

    Article  Google Scholar 

  49. Shimizu H, Kumabe T, Tominaga T, Kayama T, Hara K, Ono Y, et al. Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR Am J Neuroradiol. 1996;17:737–47.

    Google Scholar 

  50. Somorjai RL, Dolenko B, Nikulin AK, Pizzi N, Scarth G, Zhilkin P, et al. Classification of 1H MR spectra of human brain neoplasms: the influence of preprocessing and computerized consensus diagnosis on classification accuracy. J Magn Reson Imaging. 1996;6:437–44.

    Article  Google Scholar 

  51. Nelson SJ, Vigneron DB, Star-Lack J, Kurhanewicz J. High spatial resolution and speed in MRSI. NMR Biomed. 1997;10:411–22.

    Article  Google Scholar 

  52. Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, et al. Preoperative proton MR spectroscopy in brain tumor patients with a mass lesion: correlation with resection specimen histology. AJNR. 2001;22:604–12.

    Google Scholar 

  53. Vigneron D, Bollen A, McDermott M, Wald L, Day M, MoyherNoworolski S, et al. Three-dimensional magnetic resonance spectroscopic imaging of histologically confirmed brain tumors. MRI. 2001;19:89–101.

    Article  Google Scholar 

  54. Wald AA, Day MR, Nelson SJ, Moyher SE, Henry RG, Sneed PK, et al. Response of glioblastoma multiforme to brachytherapy detected by 3D proton magnetic resonance spectroscopic imaging. J Neurosurg. 1997;87:525–34.

    Article  Google Scholar 

  55. Star-Lack J, Vigneron DB, Pauly J, Kurhanewicz J, Nelson S-J. Improved solvent suppression and increased spatial excitation bandwidths for 3-D PRESS CSI using phase-compensating spectral/spatial spin-echo pulses. J Magn Reson Imaging. 1997;7:745–57.

    Article  Google Scholar 

  56. Tran T-KC, Vigneron DB, Sailasuta N, Tropp J, Le Roux P, Kurhanewicz J, et al. Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med. 2000;43:23–33.

    Article  Google Scholar 

  57. Duyn JH, Gillen J, Sobering G, van Zijl PC, Moonen C-T. Multisection proton MR spectroscopic imaging of the brain. Radiology. 1993;188:277–82.

    Article  Google Scholar 

  58. Posse S, Tedeschi G, Risinger R, Ogg R, Bihan DL. High speed 1H spectroscopic imaging in human brain by echo planar spatialspectral encoding. Magn Res Med. 1995;33:34–40.

    Article  Google Scholar 

  59. Nelson S-J. The analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med. 2001;46:228–39.

    Article  Google Scholar 

  60. Posse S, DeCharli C, Bihan D-L. Three-dimensional echoplanar MR spectroscopic imaging at short echo times in the human brain. Radiology. 1994;192:733–8.

    Article  Google Scholar 

  61. Provencher S-W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672–9.

    Article  Google Scholar 

  62. McKnight TR, Noworolski SM, Vigneron D, Nelson S-J. An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Mag Reson Imaging. 2001;13:167–77.

    Article  Google Scholar 

  63. Nelson SJ, Vigneron DB, Dillon W-P. Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed. 1999;12:123–38.

    Article  Google Scholar 

  64. Pirzkall A, McKnight TR, Graves EE, Carol MP, Sneed PK, Wara WW, et al. MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys. 2001;50:915–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soufi, G.J., Fallahpour, N., Soufi, K.J., Iravani, S. (2019). Magnetic Resonance Spectroscopic Analysis in Brain Tumors. In: Shukla, A. (eds) Medical Imaging Methods. Springer, Singapore. https://doi.org/10.1007/978-981-13-9121-7_2

Download citation

Publish with us

Policies and ethics