Skip to main content

Force Myography and Its Application to Human Locomotion

  • Chapter
  • First Online:
Biomedical Signal Processing

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Locomotion is a highly skillful task that we humans perform using our two limbs to commute from one place to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afzal, T., Iqbal, K., White, G., Wright, A.B.: A method for locomotion mode identification using muscle synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 608–617 (2017). https://doi.org/10.1109/TNSRE.2016.2585962

    Article  Google Scholar 

  2. Asbeck, A.T., Schmidt, K., Galiana, I., Wagner, D., Walsh, C.J.: Multi-joint soft exosuit for gait assistance. In: IEEE International Conference pn Robotics and Automation, pp. 6197–6204

    Google Scholar 

  3. Au, S.K., Weber, J., Herr, H.: Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans. Rob. 25(1), 51–66 (2009). https://doi.org/10.1109/TRO.2008.2008747

    Article  Google Scholar 

  4. Aung, M.S.H., Thies, S.B., Kenney, L.P.J., Howard, D., Selles, R., Findlow, A.H., Goulermas, J.Y.: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 908–916 (2013)

    Article  Google Scholar 

  5. Castellini, C., Artemiadis, P., Wininger, M., Ajoudani, A., Alimusaj, M., Bicchi, A., Caputo, B., et al.: Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front. Neurorobot. 8(AUG), 1–17 (2014). https://doi.org/10.3389/fnbot.2014.00022

  6. Castellini, C., Ravindra, V.: A wearable low-cost device based upon force-sensing resistors to detect single-finger forces. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 199–203 (2014). https://doi.org/10.1109/BIOROB.2014.6913776

  7. Chan, C.W., Rudins, A.: Foot biomechanics during walking and running. Mayo Clin. Proc. 69(5), 448–461 (1994). https://doi.org/10.1016/S0025-6196(12)61642-5

    Article  Google Scholar 

  8. Chang, Y.H., Huang, H.W., Hamerski, C.M., Kram, R., McN, A.R., Jayes, A.S., Biewener, A.A., et al.: The independent effects of gravity and inertia on running mechanics. J. Exp. Biol. 203(Pt 2), 229–238 (2000). https://doi.org/10.1016/0021-9290(80)90019-6

    Article  Google Scholar 

  9. Chen, B., Zheng, E., Fan, X., Liang, T., Wang, Q., Wei, K., Wang, L.: Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans. Neural Syst. Rehabil. Eng. 21(5), 744–755 (2013). https://doi.org/10.1109/TNSRE.2013.2262952

    Article  Google Scholar 

  10. Chen, B., Zheng, E., Wang, Q.: A locomotion intent prediction system based on multi-sensor fusion. Sensors (Switzerland) 14(7), 12349–12369 (2014). https://doi.org/10.3390/s140712349

    Article  Google Scholar 

  11. Cho, E., Chen, R., Merhi, L.-K., Xiao, Z., Pousett, B., Menon, C.: Force myography to control robotic upper extremity prostheses: a feasibility study. Front. Bioeng. Biotechnol. 4(March), 1–12 (2016). https://doi.org/10.3389/fbioe.2016.00018

    Article  Google Scholar 

  12. Chowdhury, R., Reaz, M., Ali, M., Bakar, A., Chellappan, K., Chang, T.: Surface electromyography signal processing and classification techniques. Sensors 13(9), 12431–12466 (2013). https://doi.org/10.3390/s130912431

    Article  Google Scholar 

  13. Connan, M., Ruiz Ramírez, E., Vodermayer, B., Castellini, C.: Assessment of a wearable force and electromyography device and comparison of the related signals for myocontrol. Front. Neurorob. 10(NOV), 1–13 (2016). https://doi.org/10.3389/fnbot.2016.00017

  14. Englehart, K., Scheme, E.: A proportional control scheme for high density force myography. J. Neural Eng. 15(4) (2018). https://doi.org/10.1088/1741-2552/aac89b

    Article  Google Scholar 

  15. Erni, T., Colombo, G.: Locomotor training in paraplegic patients: a new approach to assess changes in leg muscle EMG patterns. Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control 109(2), 135–39 (1998). https://doi.org/10.1016/S0924-980X(98)00005-8

    Article  Google Scholar 

  16. Godiyal, A.K., Mondal, M., Joshi, S.D., Joshi, D.: Force myography based novel strategy for locomotion classification. IEEE Trans. Hum. Mach. Syst. 48(6), 648–657 (2018). https://doi.org/10.1109/THMS.2018.2860598

    Article  Google Scholar 

  17. Godiyal, A.K., Verma, H.K., Khanna, N., Joshi, D.: A force myography-based system for gait event detection in overground and ramp walking. IEEE Trans. Instrum. Meas. 67(10), 2314–2323 (2018). https://doi.org/10.1109/TIM.2018.2816799

    Article  Google Scholar 

  18. Goršič, M., Kamnik, R., Ambrožič, L., Vitiello, N., Lefeber, D., Pasquini, G., Munih, M.: Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors (Switzerland) 14(2), 2776–2794 (2014). https://doi.org/10.3390/s140202776

    Article  Google Scholar 

  19. Gottschall, J.S., Nichols, T.R.: Neuromuscular strategies for the transitions between level and hill surfaces during walking. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 366(1570), 1565–1579 (2011). https://doi.org/10.1098/rstb.2010.0355

    Article  Google Scholar 

  20. Gupta, R., Agarwal, R.: Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control. Arab. J. Sci. Eng. 43(12), 7817–7835 (2018). https://doi.org/10.1007/s13369-018-3193-3

    Article  Google Scholar 

  21. Ha, K.H., Varol, H.A., Goldfarb, M.: Volitional control of a prosthetic knee using surface electromyography. IEEE Trans. Bio-Med. Eng. 58(1), 144–151 (2011). https://doi.org/10.1109/TBME.2010.2070840

    Article  Google Scholar 

  22. Huang, H., Kuiken, T.A., Lipschutz, R.D.: A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Bio-Med. Eng. 56(1), 65–73 (2009). https://doi.org/10.1109/TBME.2008.2003293

    Article  Google Scholar 

  23. Hwang, S., Lee, H.M., Cherng, R.J., Chen, J.J.J.: Electromyographic analysis of locomotion for healthy and hemiparetic subjects—study of performance variability and rail effect on treadmill. Gait Posture 18(1), 1–12 (2003). https://doi.org/10.1016/S0966-6362(02)00071-1

    Article  Google Scholar 

  24. Jasiewicz, J.M., Allum, J.H.J., Middleton, J.W., Barriskill, A., Condie, P., Purcell, B., Li, R.C.T.: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 24(4), 502–509 (2006). https://doi.org/10.1016/j.gaitpost.2005.12.017

    Article  Google Scholar 

  25. Jiang, X., Chu, Kelvin H.T., Khoshnam, M., Menon, C.: A wearable gait phase detection system based on force myography techniques. Sensors (Switzerland) 18(4), 1279 (2018). https://doi.org/10.3390/s18041279

    Article  Google Scholar 

  26. Jiang, X., Merhi, L.K., Menon, C.: Force exertion affects grasp classification using force myography. IEEE Trans. Hum. Mach. Syst. 48(2), 219–226 (2018). https://doi.org/10.1109/THMS.2017.2693245

    Article  Google Scholar 

  27. Jiang, X., Merhi, L.K., Xiao, Z.G., Menon, C.: Exploration of force myography and surface electromyography in hand gesture classification. Med. Eng. Phys. 41, 63–73 (2017). https://doi.org/10.1016/j.medengphy.2017.01.015

    Article  Google Scholar 

  28. Joshi, D., Mishra, A., Anand, S.: ANFIS based knee angle prediction: an approach to design speed adaptive contra lateral controlled AK prosthesis. Appl. Soft Comput. 11(8), 4757–4765 (2011). https://doi.org/10.1016/j.asoc.2011.07.007

    Article  Google Scholar 

  29. Joshi, D., Nakamura, B.H., Hahn, M.E.: High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification. Med. Eng. Phys. 37(5), 518–524 (2015). https://doi.org/10.1016/j.medengphy.2015.03.001

    Article  Google Scholar 

  30. Joshi, D., Nakamura, B.H., Hahn, M.E.: A novel approach for toe off estimation during locomotion and transitions on ramps and level ground. IEEE J. Biomed. Health Inform. 20(1), 153–157 (2016). https://doi.org/10.1109/JBHI.2014.2377749

    Article  Google Scholar 

  31. Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 19(2), 456–466 (2014). https://doi.org/10.1109/TMECH.2013.2240312

    Article  Google Scholar 

  32. Jung, J.Y., Heo, W., Yang, H., Park, H.: A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. Sensors (Switzerland) 15(11), 27738–27759 (2015). https://doi.org/10.3390/s151127738

    Article  Google Scholar 

  33. Khandelwal, S., Wickstrom, N.: Gait event detection in real-world environment for long-term applications: incorporating domain knowledge into time-frequency analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1363–1372 (2016). https://doi.org/10.1109/TNSRE.2016.2536278

    Article  Google Scholar 

  34. Kim, D., Hilliges, O., Izadi, S., Butler, A.D., Chen, J., Oikonomidis, I., Olivier, P.: Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and TechnologyUIST’12, p. 167 (2012). https://doi.org/10.1145/2380116.2380139

  35. Kimmeskamp, S., Hennig, E.M.: Heel to toe motion characteristics in parkinson patients during free walking. Clin. Biomech. 16(9), 806–812 (2001). https://doi.org/10.1016/S0268-0033(01)00069-9

    Article  Google Scholar 

  36. Kotiadis, D., Hermens, H.J., Veltink, P.H.: Inertial gait phase detection for control of a drop foot stimulator inertial sensing for gait phase detection. Med. Eng. Phys. 32(4), 287–297 (2010). https://doi.org/10.1016/j.medengphy.2009.10.014

    Article  Google Scholar 

  37. Lawson, B.E., Mitchell, J., Truex, D., Shultz, A., Ledoux, E., Goldfarb, M.: A robotic leg prosthesis: design, control, and implementation. IEEE Robot. Autom. Mag. 21(4), 70–81 (2014). https://doi.org/10.1109/MRA.2014.2360303

    Article  Google Scholar 

  38. Leighton, R.D.: A functional model to describe the action of the adductor muscles at the hip in the transverse plane. Physiother. Theory Pract. 22(5), 251–262 (2006). https://doi.org/10.1080/09593980600927385

    Article  Google Scholar 

  39. Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V.P., et al.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015). https://doi.org/10.1109/TOH.2015.2417570

    Article  Google Scholar 

  40. Li, N., Yang, D., Jiang, L., Liu, H., Cai, H.: Combined use of FSR sensor array and SVM classifier for finger motion recognition based on pressure distribution map. J. Bionic Eng. 9(1), 39–47 (2012). https://doi.org/10.1016/S1672-6529(11)60095-4

    Article  Google Scholar 

  41. Liu, Z., Lin, W., Geng, Y., Yang, P.: Intent pattern recognition of lower-limb motion based on mechanical sensors. IEEE/CAA J. Autom. Sinica 4(4), 651–660 (2017). https://doi.org/10.1109/JAS.2017.7510619

    Article  Google Scholar 

  42. Mannini, A., Genovese, V., Sabatini, A.M., Member, S.: Online decoding of hidden markov models for gait event detection using foot-mounted gyroscopes. IEEE J. Biomed. Health Inform. 18(4), 1122–1130 (2014)

    Article  Google Scholar 

  43. Maqbool, H.F., Husman, M.A.B., Awad, M.I., Abouhossein, A., Iqbal, N.: A real-time gait event detection for lower limb prosthesis control and evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9), 1500–1509 (2017)

    Article  Google Scholar 

  44. Martinez-villalpando, E.C., Herr, H.: Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking 46(3), 361–373 (2009). https://doi.org/10.1682/JRRD.2008.09.0131

  45. Mo, S., Chow, D.H.K.: Accuracy of three methods in gait event detection during overground running. Gait Posture 59 (October 2017), 93–98 (2018). https://doi.org/10.1016/j.gaitpost.2017.10.009

    Article  Google Scholar 

  46. Novak, D., Reberšek, P., Rossi, S.M.M.D., Donati, M., Podobnik, J., Beravs, T., Lenzi, T., Vitiello, N., Carrozza, M.C., Munih, M.: Automated detection of gait initiation and termination using wearable sensors. Med. Eng. Phys. 35(12), 1713–1720 (2013). https://doi.org/10.1016/j.medengphy.2013.07.003

    Article  Google Scholar 

  47. Paisey, R.B., Abbott, A., Levenson, R., Harrington, A., Browne, D., Moore, J., Bamford, M., Roe, M.: Diabetes-related major lower limb amputation incidence is strongly related to diabetic foot service provision and improves with enhancement of services: peer review of the south-west of england. Diabet. Med. 35(1), 53–62 (2018). https://doi.org/10.1111/dme.13512

    Article  Google Scholar 

  48. Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P.: Continuous hidden markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 62(5), 1073–1083 (2013). https://doi.org/10.1109/TIM.2012.2236792

    Article  Google Scholar 

  49. Peng, J., Fey, N.P., Kuiken, T.A., Hargrove, L.J.: Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent. J. Biomech. 49(4), 528–536 (2016). https://doi.org/10.1016/j.jbiomech.2015.12.041

    Article  Google Scholar 

  50. Preece, S.J., Goulermas, J.Y., Kenney, L.P., Howard, D.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56(3), 871–879 (2009). https://doi.org/10.1109/TBME.2008.2006190

    Article  Google Scholar 

  51. Radmand, A., Scheme, E., Englehart, K.: High-density force myography: a possible alternative for upper-limb prosthetic control. J. Rehabil. Res. Dev. 53(4), 443–456 (2016). https://doi.org/10.1682/JRRD.2015.03.0041

    Article  Google Scholar 

  52. Ramstrand, N., Nilsson, K.A.: A comparison of foot placement strategies of transtibial amputees and able-bodied subjects during stair ambulation. Prosthet. Orthot. Int. 33(4), 348–355 (2009). https://doi.org/10.3109/03093640903074891

    Article  Google Scholar 

  53. Riener, R., Rabuffetti, M., Frigo, C.: Stair ascent and descent at different inclinations. Gait Posture 15(1), 32–44 (2002). https://doi.org/10.1016/S0966-6362(01)00162-X

    Article  Google Scholar 

  54. Sabatini, A.M., Martelloni, C., Scapellato, S., Cavallo, F.: Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 52(3), 486–494 (2005)

    Article  Google Scholar 

  55. Sadarangani, G.P., Menon, C.: A preliminary investigation on the utility of temporal features of force myography in the two-class problem of grasp versus no-grasp in the presence of upper-extremity movements. BioMed. Eng. Online 16(1), 1–19 (2017). https://doi.org/10.1186/s12938-017-0349-4

    Article  Google Scholar 

  56. Sanford, J., Patterson, R., Popa, D.O.: Concurrent surface electromyography and force myography classification during times of prosthetic socket shift and user fatigue. J. Rehabil. Assist. Technol. Eng. 4 (2017). https://doi.org/10.1177/2055668317708731

    Article  Google Scholar 

  57. Sarasola-Sanz, A., Irastorza-Landa, N., Lopez-Larraz, E., Bibian, C., Helmhold, F., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. Int. Conf. Rehabil. Rob. (ICORR) 2017, 895–900 (2017). https://doi.org/10.1109/ICORR.2017.8009362

    Article  Google Scholar 

  58. Sensinger, J.W., Lock, B.A., Kuiken, T.A.: Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms 12. IEEE Trans. Neural Syst. Rehabil. Eng. 17(3), 270–278 (2009)

    Article  Google Scholar 

  59. Varol, H.A., Sup, F., Goldfarb, M.: Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57(3), 542–551 (2010). https://doi.org/10.1109/TBME.2009.2034734

    Article  Google Scholar 

  60. Varol, H.A., Sup, F., Goldfarb, M.: Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. In: 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, pp. 645–651 (2009). https://doi.org/10.1109/ICORR.2009.5209582

  61. Veer, K., Sharma, T.: A novel feature extraction for robust EMG pattern recognition. J. Med. Eng. Technol. 40(4), 149–154 (2016). https://doi.org/10.3109/03091902.2016.1153739

    Article  Google Scholar 

  62. Wininger, M.: Pressure signature of forearm as predictor of grip force. J. Rehabil. Res. Dev. 45(6), 883–892 (2008). https://doi.org/10.1682/JRRD.2007.11.0187

    Article  Google Scholar 

  63. Xiao, Z.G., Menon, C.: Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities. J. NeuroEng. Rehabil. 11(1), 1–13 (2014). https://doi.org/10.1186/1743-0003-11-2

    Article  Google Scholar 

  64. Xiao, Z.G., Menon, C.: Performance of forearm FMG and SEMG for estimating elbow, forearm and wrist positions. J. Bionic Eng. 14(2), 284–295 (2017). https://doi.org/10.1016/S1672-6529(16)60398-0

    Article  Google Scholar 

  65. Young, A.J., Simon, A.M., Hargrove, L.J.: A training method for locomotion mode prediction using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 671–677 (2014). https://doi.org/10.1109/TNSRE.2013.2285101

    Article  Google Scholar 

  66. Zheng, E., Mai, J., Liu, Y., Wang, Q.: Forearm motion recognition with noncontact capacitive sensing. Front. Neurorob. 12(July), 1–13 (2018). https://doi.org/10.3389/fnbot.2018.00047

    Article  Google Scholar 

  67. Zheng, E., Manca, S., Yan, T., Parri, A., Vitiello, N., Wang, Q.: Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators. IEEE Trans. Biomed. Eng. 99, 1–12 (2017). https://doi.org/10.1109/TBME.2017.2672720

    Article  Google Scholar 

  68. Zheng, E., Wang, Q.: Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 161–170 (2017). https://doi.org/10.1109/TNSRE.2016.2529581

    Article  MathSciNet  Google Scholar 

  69. Zhou, R., Junsong, Y., Jingjing, M., Zhengyou, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimed. 15(5), 1110–1120 (2013). https://doi.org/10.1109/TMM.2013.2246148

    Article  Google Scholar 

  70. Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the United States: 2005–2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Deepak Joshi would like to thank the Department of Science and Technology, Government of India for funding the present work through Early Career Research Award (ECR/2016/001282), and would also like to thank Indian Council of Medical Research (ICMR) for supporting the work via grant number 5/20/13/Bio/2011-NCD-1.

Nitin Khanna would like to thank the Indian Institute of Technology Gandhinagar as this material is based upon work partially supported by internal research grant IP/IITGN/EE/NK/201516-06.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies. Address all correspondence to Deepak Joshi at joshid@iitd.ac.in.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godiyal, A.K., Verma, V., Khanna, N., Joshi, D. (2020). Force Myography and Its Application to Human Locomotion. In: Naik, G. (eds) Biomedical Signal Processing. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9097-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9097-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9096-8

  • Online ISBN: 978-981-13-9097-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics