Skip to main content
Log in

Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier (p value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R.: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429 (2008). https://doi.org/10.1016/j.apmr.2007.11.005

    Article  Google Scholar 

  2. Sup, F.; Varol, H.A.; Mitchell, J.; Withrow, T.J.; Goldfarb, M.: Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE Trans. Mechatron. 14, 667–676 (2009). https://doi.org/10.1109/TMECH.2009.2032688

    Article  Google Scholar 

  3. Au, S.; Berniker, M.; Herr, H.: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 21, 654–666 (2008). https://doi.org/10.1016/j.neunet.2008.03.006

    Article  Google Scholar 

  4. Huang, Robert D.; Lipschutz, Todd A.; Kuiken, H.: A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 56, 65–73 (2009). https://doi.org/10.1109/TBME.2008.2003293

    Article  Google Scholar 

  5. Tucker, M.R.; Olivier, J.; Pagel, A.; Bleuler, H.; Bouri, M.; Lambercy, O.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuroeng. Rehabil. 12, 1–29 (2015). https://doi.org/10.1186/1743-0003-12-1

    Article  Google Scholar 

  6. Grimes, D.L.: An active multi mode above knee prosthesis controller (1979)

  7. Varol, H.A.; Sup, F.; Goldfarb, M.: Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57, 542–551 (2010)

    Article  Google Scholar 

  8. Young, A.J.; Simon, A.M.; Eey, N.P.; Hargrove, L.J.: Intent recognition in a powered lower limb prosthesis using time history information. Ann. Biomed. Eng. 42, 631–641 (2014). https://doi.org/10.1007/s10439-013-0909-0

    Article  Google Scholar 

  9. Chen, B.; Zheng, E.; Fan, X.; Liang, T.; Wang, Q.; Wei, K.; Wang, L.; Member, S.; Zheng, E.; Fan, X.; Liang, T.; Wang, Q.; Wei, K.; Wang, L.: Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 744–755 (2013). https://doi.org/10.1109/TNSRE.2013.2262952

    Article  Google Scholar 

  10. Chen, B.; Zheng, E.; Wang, Q.: A locomotion intent prediction system based on multi-sensor fusion. Sensors 14, 12349–12369 (2014). https://doi.org/10.3390/s140712349

    Article  Google Scholar 

  11. Young, A.J.; Simon, A.M.; Hargrove, L.J.: A training method for locomotion mode prediction using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 671–677 (2014)

    Article  Google Scholar 

  12. Chen, B.; Wang, Q.; Wang, X.; Huang, Y.; Wei, K.; Wang, Q.: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution. Mechatronics 32, 12–21 (2015). https://doi.org/10.1016/j.mechatronics.2015.09.002

    Article  Google Scholar 

  13. Yuan, K.; Wang, Q.; Wang, L.: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees. IEEE Trans. Mechatron. 20, 618–630 (2015)

    Article  Google Scholar 

  14. Young, A.J.; Hargrove, L.J.: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 217–225 (2016). https://doi.org/10.1109/TNSRE.2015.2412461

    Article  Google Scholar 

  15. Farrell, M.T.; Herr, H.: A method to determine the optimal features for control of a powered lower-limb prostheses. In: 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts, pp. 6041–6046 (2011)

  16. Zhang, X.; Wang, D.; Yang, Q.; Huang, H.: An automatic and user-driven training method for locomotion mode recognition for artificial leg control. In: 34th Annual International Conference of the IEEE EMBS, San Diego, CA, USA, pp. 6116–6119 (2012)

  17. Du, L.; Zhang, F.; Liu, M.; Huang, H.: Toward design of an environment-aware adaptive locomotion-mode-recognition system. IEEE Trans. Biomed. Eng. 59, 2716–2725 (2012)

    Article  Google Scholar 

  18. Miller, J.D.; Beazer, M.S.; Hahn, M.E.: Myoelectric walking mode classification for transtibial amputees. IEEE Trans. Biomed. Eng. 60, 2745–2750 (2013). https://doi.org/10.1109/TBME.2013.2264466

    Article  Google Scholar 

  19. Zhang, F.; Huang, H.: Source selection for real-time user intent recognition toward volitional control of artificial legs. IEEE J. Biomed. Heal. Inform. 17, 907–914 (2013)

    Article  Google Scholar 

  20. Liu, M.; Wang, D.; Huang, H.H.: Development of an environment-aware locomotion mode recognition system for powered lower limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 434–443 (2016). https://doi.org/10.1109/TNSRE.2015.2420539

    Article  Google Scholar 

  21. Young, A.J.; Kuiken, T.A.; Hargrove, L.J.: Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. J. Neural Eng. 11, 1–12 (2014). https://doi.org/10.1088/1741-2560/11/5/056021

    Article  Google Scholar 

  22. Spanias, J.A.; Simon, A.M.; Ingraham, K.A.; Hargrove, L.J.: Effect of additional mechanical sensor data on an EMG-based pattern recognition system for a powered leg prosthesis. In: IEEE EMBS Conference on Neural Engineering, Montpellier, France, pp. 22–24 (2015)

  23. Joshi, D.; Hahn, M.E.: Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input. Ann. Biomed. Eng. 44, 1275–1284 (2016). https://doi.org/10.1007/s10439-015-1407-3

    Article  Google Scholar 

  24. Huang, H.; Zhang, F.; Hargrove, L.J.; Dou, Z.; Rogers, D.R.; Englehart, K.B.: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed. Eng. 58, 2867–2875 (2011)

    Article  Google Scholar 

  25. Wilson, D.H.; Atkeson, C.: Active capacitive sensing: exploring a new wearable sensing modality for activity recognition. Pervasive Comput. 6030, 319–336 (2010). https://doi.org/10.1007/978-3-642-12654-3

    Article  Google Scholar 

  26. Wang, L.; Wang, Q.; Zheng, E.; Wang, L.; Wei, K.; Wang, Q.: A non-contact capacitive sensing system for recognizing locomotion modes of transtibial. IEEE Trans. Biomed. Eng. 61, 2911–2920 (2014). https://doi.org/10.1109/TBME.2014.2334316

    Article  Google Scholar 

  27. Pati, S.; Joshi, D.; Mishra, A.: Locomotion classification using EMG signal. In: 2010 International Conference on Information and Emerging Technologies, Karachi, pp. 1–6 (2010)

  28. Huang, H.; Zhang, F.; Sun, Y.L.; He, H.: Design of a robust EMG sensing interface for pattern classification. J. Neural Eng. 7, 56005 (2010). https://doi.org/10.1088/1741-2560/7/5/056005

    Article  Google Scholar 

  29. Adewuyi, A.A.; Hargrove, L.J.; Kuiken, T.A.; Medicine, P.: Evaluating EMG feature and classifier selection for application to partial-hand prosthesis control. Front. Neurorobot. (2016). https://doi.org/10.3389/fnbot.2016.00015

  30. Spry, S.; Zebas, C.; Visser, M.: What is leg dominance. In: Hamill, J. (ed.) ISBS -XI Conference Proceedings Archive, pp. 165–168. International Society of Biomechanics in Sports, Amherst (1993)

    Google Scholar 

  31. Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H.: Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12, 34–45 (2000). https://doi.org/10.1016/S0966-6362(00)00070-9

    Article  Google Scholar 

  32. Gentry, V.; Gabbard, C.: Foot-preference behavior: a developmental perspective. J. Gen. Psychol. 122, 37-27 (1995). https://doi.org/10.1080/00221309.1995.9921220

    Article  Google Scholar 

  33. SENIAM: Sensors location: recommendations for sensor locations on individual muscles. http://seniam.org/sensor_location.htm

  34. Rouhani, H.; Favre, J.; Crevoisier, X.; Aminian, K.: Measurement of multi-segment foot joint angles during gait using a wearable system. J. Biomech. Eng. 134, 61006 (2012). https://doi.org/10.1115/1.4006674

    Article  Google Scholar 

  35. Chao, E.Y.S.; Volokh, K.Y.; Yoshida, H.; Shiba, N.; Ide, T.: Discrete element analysis in musculoskeletal biomechanics. Mol. Cell. Biomech. 7, 175–92 (2010)

    Google Scholar 

  36. Zheng, E.; Wang, Q.: Noncontact capacitive sensing based locomotion transition recognition for amputees with robotic transtibial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 161–170 (2017). https://doi.org/10.1109/TNSRE.2016.2529581

    Article  Google Scholar 

  37. Chen, B.; Zheng, E.; Wang, Q.; Wang, L.: A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition. Neurocomputing 149, 585–593 (2015). https://doi.org/10.1016/j.neucom.2014.08.016

    Article  Google Scholar 

  38. Gupta, R.; Agarwal, R.: Feature reduction and selection of SEMG signal for locomotion identification. In: 9th International Conference on Advances in Metrology, AdMet-2016, New Delhi, India (2016)

  39. Hudgins, B.; Parker, P.; Scott, N.R.: A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40, 82–94 (1993)

    Article  Google Scholar 

  40. Du, Y.-C.; Lin, C.-H.; Shyu, L.-Y.; Chen, T.: Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis. Expert Syst. Appl. 37, 4283–4291 (2010). https://doi.org/10.1016/j.eswa.2009.11.072

    Article  Google Scholar 

  41. Amancio, D.R.; Comin, C.H.; Casanova, D.; Travieso, G.; Bruno, O.M.; Rodrigues, F.A.; Da Fontoura Costa, L.: A systematic comparison of supervised classifiers. PLoS ONE 9, 1–14 (2014). https://doi.org/10.1371/journal.pone.0094137

    Article  Google Scholar 

  42. Afzal, T.; Iqbal, K.; White, G.; Wright, A.B.: A method for locomotion mode identification using muscle synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 608–617 (2017). https://doi.org/10.1109/TNSRE.2016.2585962

    Article  Google Scholar 

  43. Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 30, 451–462 (2000). https://doi.org/10.1109/5326.897072

    Article  Google Scholar 

  44. Sreerama, K.M.: Automatic construction of decision trees from data: a multi-disciplinary survey. Data Min. Knowl. Discov. 2, 345–389 (1998). https://doi.org/10.1023/A:1009744630224

    Article  Google Scholar 

  45. Cover, T.; Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

    Article  MATH  Google Scholar 

  46. Zhang, H.: The optimality of naive Bayes. In: Proceedings of Seventeenth International Florida Artificial Intelligence Research Society Conference FLAIRS 2004, vol. 1, pp. 1–6 (2004). https://doi.org/10.1016/j.patrec.2005.12.001

    Article  Google Scholar 

  47. Fawcett, T.: An introduction to ROC analysis. Pattern Recog. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  48. Hand, D.J.; Till, R.J.: A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45, 171–186 (2001). https://doi.org/10.1023/A:1010920819831

    Article  MATH  Google Scholar 

  49. Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L.: Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 5(13087), 1–11 (2015). https://doi.org/10.1038/srep13087

    Article  Google Scholar 

  50. Warren, D.J.; Member, S.; Kellis, S.; Nieveen, J.G.; Wendelken, S.M.; Davis, S.; Clark, G.A.; Normann, R.A.; Hutchinson, D.T.; Fellow, V.J.M.: Recording and decoding for neural prostheses. Proc. IEEE 104, 374–391 (2016). https://doi.org/10.1016/j.visres.2004.09.021

    Article  Google Scholar 

  51. Geethanjali, P.; Ray, K.K.: A low-cost real-time research platform for EMG pattern recognition-based prosthetic hand. IEEE/ASME Trans. Mechatron. 20, 1948–1955 (2015)

    Article  Google Scholar 

  52. Huang, S.; Ferris, D.P.: Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface. J. Neuroeng. Rehabil. 9, 55 (2012). https://doi.org/10.1186/1743-0003-9-55

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks to the Department of Electronics and Information Technology (DeitY), Government of India for providing the financial support. Also, Director, Thapar University, Patiala, Punjab, India to encourage the current research work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3359 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Agarwal, R. Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control. Arab J Sci Eng 43, 7817–7835 (2018). https://doi.org/10.1007/s13369-018-3193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3193-3

Keywords

Navigation