Skip to main content

TGF-β/Smad and Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM) that disrupts and replaces functional parenchyma, which leads to organ failure. It is known as the major pathological mechanism of chronic kidney disease (CKD). Although CKD has an impact on no less than 10% of the world population, therapeutic options are still limited. Regardless of etiology, elevated TGF-β levels are highly correlated with the activated pro-fibrotic pathways and disease progression. TGF-β, the key driver of renal fibrosis, is involved in a dynamic pathophysiological process that leads to CKD and end-stage renal disease (ESRD). It is becoming clear that epigenetics regulates renal programming, and therefore, the development and progression of renal disease. Indeed, recent evidence shows TGF-β1/Smad signaling regulates renal fibrosis via epigenetic-correlated mechanisms. This review focuses on the function of TGF-β/Smads in renal fibrogenesis, and the role of epigenetics as a regulator of pro-fibrotic gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai J, Nie J, He J, Guo Q, Li M, Lei Y et al (2015) GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-beta-Induced Smad3 phosphorylation. J Am Soc Nephrol 26:1827–1838

    CAS  PubMed  Google Scholar 

  • Alvarez ML, Khosroheidari M, Eddy E, Kiefer J (2013) Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS ONE 8:e77468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL (2002) p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115:3193–3206

    CAS  PubMed  Google Scholar 

  • Barnes JL, Gorin Y (2011) Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int 79:944–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12:142–148

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH, Gundersen G, Kolsto AB, Prydz H (1992) CpG islands in mammalian gene promoters are inherently resistant to de novo methylation. Genet Anal Tech Appl 9:48–53

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW et al (2014) Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 224:175–185

    Article  CAS  PubMed  Google Scholar 

  • Border WA, Noble NA (1998) Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney Int 54:1390–1391

    Article  CAS  PubMed  Google Scholar 

  • Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 346:371–374

    Article  CAS  PubMed  Google Scholar 

  • Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610

    Article  PubMed  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:121ra118

    Article  CAS  Google Scholar 

  • Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol 112:49–57

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, Chung AC et al (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC et al (2014) MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22:842–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho ME, Smith DC, Branton MH, Penzak SR, Kopp JB (2007) Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2:906–913

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Ryu Y, Kee HJ, Cho SN, Kim GR, Cho JY et al (2015) Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol 72:130–140

    Article  CAS  PubMed  Google Scholar 

  • Chung AC, Lan HY (2015) MicroRNAs in renal fibrosis. Front Physiol 6:50

    PubMed  Google Scholar 

  • Chung AC, Huang XR, Zhou L, Heuchel R, Lai KN, Lan HY (2009) Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice. Nephrol Dial Transplant 24:1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276

    Article  CAS  PubMed  Google Scholar 

  • Eddy AA, Neilson EG (2006) Chronic kidney disease progression. J Am Soc Nephrol 17:2964–2966

    Article  PubMed  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11:233–244

    Article  CAS  PubMed  Google Scholar 

  • Feng M, Tang PM, Huang XR, Sun SF, You YK, Xiao J et al (2018) TGF-beta mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol Ther 26:148–161

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H et al (2003) Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 305:1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T et al (2004) Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci U S A 101:8687–8692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44:253–265

    CAS  PubMed  Google Scholar 

  • Grande MT, Lopez-Novoa JM (2009) Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5:319–328

    Article  CAS  PubMed  Google Scholar 

  • Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997

    Article  CAS  PubMed  Google Scholar 

  • Grgic I, Duffield JS, Humphreys BD (2012) The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol 27:183–193

    Article  PubMed  Google Scholar 

  • He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu BM et al (2014) Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 1842:2204–2215

    Article  CAS  PubMed  Google Scholar 

  • Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D et al (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol 166:761–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh CL (1999) Evidence that protein binding specifies sites of DNA demethylation. Mol Cell Biol 19:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XR, Chung AC, Wang XJ, Lai KN, Lan HY (2008a) Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. Am J Physiol Renal Physiol 295:F118–F127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XR, Chung AC, Zhou L, Wang XJ, Lan HY (2008b) Latent TGF-beta1 protects against crescentic glomerulonephritis. J Am Soc Nephrol 19:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XZ, Wen D, Zhang M, Xie Q, Ma L, Guan Y et al (2014) Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-beta/Smad3 pathway. J Cell Biochem 115:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Inazaki K, Kanamaru Y, Kojima Y, Sueyoshi N, Okumura K, Kaneko K et al (2004) Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 66:597–604

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A et al (2007) Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26:500–508

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jinde K, Nikolic-Paterson DJ, Huang XR, Sakai H, Kurokawa K, Atkins RC et al (2001) Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am J Kidney Dis 38:761–769

    Article  CAS  PubMed  Google Scholar 

  • Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA et al (2007) Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 18:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Ka SM, Yeh YC, Huang XR, Chao TK, Hung YJ, Yu CP et al (2012) Kidney-targeting Smad7 gene transfer inhibits renal TGF-beta/MAD homologue (SMAD) and nuclear factor kappaB (NF-kappaB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia 55:509–519

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Natarajan R (2014) Diabetic nephropathy–emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I et al (2009) TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 11:881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim BK, Moon KC, Hong HK, Lee HS (2003) Activation of the TGF-beta/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int 64:1715–1721

    Article  CAS  PubMed  Google Scholar 

  • Kolling M, Kaucsar T, Schauerte C, Hubner A, Dettling A, Park JK et al (2017) Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice. Mol Ther 25:165–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP et al (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74:991–1003

    CAS  PubMed  Google Scholar 

  • Kriegel AJ, Fang Y, Liu Y, Tian Z, Mladinov D, Matus IR et al (2010) MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 38:8338–8347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakner AM, Steuerwald NM, Walling TL, Ghosh S, Li T, McKillop IH et al (2012) Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 56:300–310

    Article  CAS  PubMed  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung AKL (2015) The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol 25:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME et al (2004) Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol 164:1389–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ (2010a) Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 177:1065–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y et al (2010b) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59:2612–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY (2013) The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-beta/Smad3-Azin1 pathway. Kidney Int 84:1129–1144

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Xu C, Pan Z, Zhang Y, Xu Z, Chen Y et al (2014) The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther 22:1122–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E et al (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS ONE 8:e54001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GX, Li YQ, Huang XR, Wei LH, Zhang Y, Feng M et al (2014) Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin Sci (Lond) 127:195–208

    Article  CAS  Google Scholar 

  • Lopez-Hernandez FJ, Lopez-Novoa JM (2012) Role of TGF-beta in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res 347:141–154

    Article  CAS  PubMed  Google Scholar 

  • Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luczak MW, Jagodzinski PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154

    CAS  PubMed  Google Scholar 

  • Ma J, Xue M (2018) LINK-A lncRNA promotes migration and invasion of ovarian carcinoma cells by activating TGF-beta pathway. Biosci Rep 38:pii: BSR20180936

    Article  Google Scholar 

  • Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87:297–307

    Article  PubMed  Google Scholar 

  • Manickam N, Patel M, Griendling KK, Gorin Y, Barnes JL (2014) RhoA/Rho kinase mediates TGF-beta1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol 307:F159–F171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariasegaram M, Tesch GH, Verhardt S, Hurst L, Lan HY, Nikolic-Paterson DJ (2010) Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells. Biochem Biophys Res Commun 393:855–859

    Article  CAS  PubMed  Google Scholar 

  • Marquardt P, Muller-Hermelink HK (1990) Characteristics of T-lymphocytes infiltrating human B-cell lymphomas. Environ Health Perspect 88:233–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P et al (2010) Smad2 protects against TGF-beta/Smad3-mediated renal fibrosis. J Am Soc Nephrol 21:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Huang XR, Xiao J, Chen HY, Zhong X, Chung AC et al (2012a) Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227:175–188

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Huang XR, Xiao J, Chung AC, Qin W, Chen HY et al (2012b) Disruption of Smad4 impairs TGF-beta/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int 81:266–279

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Chung AC, Lan HY (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254

    Article  CAS  Google Scholar 

  • Meng XM, Tang PM, Li J, Lan HY (2015a) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Zhang Y, Huang XR, Ren GL, Li J, Lan HY (2015b) Treatment of renal fibrosis by rebalancing TGF-beta/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 6:36984–36997

    PubMed  PubMed Central  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Cool BL, Laderoute KR, Foretz M, Viollet B, Simonson MS (2008) AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J Biol Chem 283:10461–10469

    Article  CAS  PubMed  Google Scholar 

  • Moon JA, Kim HT, Cho IS, Sheen YY, Kim DK (2006) IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int 70:1234–1243

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Takemura T, Hino S, Yoshioka K (1997) Urinary transforming growth factor-beta in patients with glomerular diseases. Pediatr Nephrol 11:334–336

    Article  CAS  PubMed  Google Scholar 

  • Ng YY, Huang TP, Yang WC, Chen ZP, Yang AH, Mu W et al (1998) Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 54:864–876

    Article  CAS  PubMed  Google Scholar 

  • Ng YY, Fan JM, Mu W, Nikolic-Paterson DJ, Yang WC, Huang TP et al (1999) Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation. Nephrol Dial Transplant 14:2860–2872

    Article  CAS  PubMed  Google Scholar 

  • Nikolic-Paterson DJ, Wang S (2011) Lan HY (2014) Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl 4:34–38

    Article  CAS  Google Scholar 

  • Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H et al (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 297:F729–F739

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  CAS  PubMed  Google Scholar 

  • Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V et al (2001) Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 108:1853–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J et al (2015) Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med 21:150–158

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J et al (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation 126:840–850

    Article  CAS  PubMed  Google Scholar 

  • Park JT, Kato M, Lanting L, Castro N, Nam BY, Wang M et al (2014) Repression of let-7 by transforming growth factor-beta1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am J Physiol Renal Physiol 307:F1390–F1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen M, Thorikay M, Deckers M, van Dinther M, Grygielko ET, Gellibert F et al (2008) Oral administration of GW788388, an inhibitor of TGF-beta type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73:705–715

    Article  CAS  PubMed  Google Scholar 

  • Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M et al (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276:19945–19953

    Article  CAS  PubMed  Google Scholar 

  • Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponnusamy M, Zhuang MA, Zhou X, Tolbert E, Bayliss G, Zhao TC et al (2015) Activation of Sirtuin-1 promotes renal fibroblast activation and aggravates renal fibrogenesis. J Pharmacol Exp Ther 354:142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Bacolla A, Wells RD, Roberts RJ (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 274:33002–33010

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM et al (2011) TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol 22:1462–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu C, Hanson RL, Fufaa G, Kobes S, Gluck C, Huang J et al (2018) Cytosine methylation predicts renal function decline in American Indians. Kidney Int 93:1417–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich B, Schmidbauer K, Rodriguez Gomez M, Johannes Hermann F, Gobel N, Bruhl H et al (2013) Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int 84:78–89

    Article  CAS  PubMed  Google Scholar 

  • Rius M, Lyko F (2012) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31:4257–4265

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003) TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 284:F243–F252

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR et al (2011) Pirfenidone for diabetic nephropathy. J Am Soc Nephrol 22:1144–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Srivastava SP, Kanasaki M, He J, Kitada M, Nagai T et al (2015) Interactions of DPP-4 and integrin beta1 influences endothelial-to-mesenchymal transition. Kidney Int 88:479–489

    Article  CAS  PubMed  Google Scholar 

  • Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15:272–286

    Article  CAS  PubMed  Google Scholar 

  • Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 86:1111–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE et al (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SF, Tang PMK, Feng M, Xiao J, Huang XR, Li P et al (2018) Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b. Diabetes 67:731–744

    Article  CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10:226–237

    Article  CAS  PubMed  Google Scholar 

  • Tampe B, Tampe D, Muller CA, Sugimoto H, LeBleu V, Xu X et al (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang PM, Tang PC, Chung JY, Lan HY (2017) TGF-beta1 signaling in kidney disease: from Smads to long non-coding RNAs. Noncoding RNA Res 2:68–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchida K, Zhu Y, Siva S, Dunn SR, Sharma K (2003) Role of Smad4 on TGF-beta-induced extracellular matrix stimulation in mesangial cells. Kidney Int 63:2000–2009

    Article  CAS  PubMed  Google Scholar 

  • Tu X, Zhang H, Zhang J, Zhao S, Zheng X, Zhang Z et al (2014) MicroRNA-101 suppresses liver fibrosis by targeting the TGFbeta signalling pathway. J Pathol 234:46–59

    Article  CAS  PubMed  Google Scholar 

  • van Meeteren LA, ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347:177–186

    Article  PubMed  CAS  Google Scholar 

  • Voelker J, Berg PH, Sheetz M, Duffin K, Shen T, Moser B et al (2017) Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J Am Soc Nephrol 28:953–962

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Sakai N, Matsushima K, Kaneko S (2007) Fibrocytes: a new insight into kidney fibrosis. Kidney Int 72:269–273

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A et al (2010) E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 59:1794–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Dai C, Li Y, Liu Y (2011) Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int 80:1159–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Jha JC, Hagiwara S, McClelland AD, Jandeleit-Dahm K, Thomas MC et al (2014) Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int 85:352–361

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y et al (2016) TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 7:8809–8822

    PubMed  Google Scholar 

  • Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH et al (2013) Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Chen F, Cui X, Yang L, Chen J, Zhao J et al (2018) LncRNA NKILA suppresses TGF-beta-induced epithelial-mesenchymal transition by blocking NF-kappaB signaling in breast cancer. Int J Cancer 43:2213–2224

    Article  CAS  Google Scholar 

  • Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R, Maizel J et al (2015) Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 26:817–829

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Tang W, Yuan Q, Peng L, Yu P (2015) Epigenetic repression of Kruppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int J Mol Med 35:1596–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Xue JD, Chao F, Jin YF, Fu Q (2016) Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget 7:51473–51481

    PubMed  PubMed Central  Google Scholar 

  • Xue R, Li Y, Li X, Ma J, An C, Ma Z (2018) miR-185 affected the EMT, cell viability and proliferation via DNMT1/MEG3 pathway in TGF-beta1-induced renal fibrosis. Cell Biol Int, 2018 Aug 10. https://doi.org/10.1002/cbin.11046 [Epub ahead of print]

  • Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI et al (1996) Expression of transforming growth factor-beta isoforms in human glomerular diseases. Kidney Int 49:461–469

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Chen YG (2011) Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J 434:1–10

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Hishikawa K, Marumo T, Fujita T (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol 18:58–65

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Guo Y, Chen B, Dong P, Zheng J (2015) MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Invest 95:781–789

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Varga J (2001) Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 276:38502–38510

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M et al (2013) Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 304:F601–F613

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  CAS  PubMed  Google Scholar 

  • Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O et al (2016) Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis 75:226–233

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Meng XM, Huang XR, Lan HY (2018) The preventive and therapeutic implication for renal fibrosis by targeting TGF-beta/Smad3 signaling. Clin Sci (Lond) 132:1403–1415

    Article  CAS  Google Scholar 

  • Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C et al (2017) MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell 16:387–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Chung AC, Chen HY, Meng XM, Lan HY (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22:1668–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R et al (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Fu P, Huang XR, Liu F, Chung AC, Lai KN et al (2010) Mechanism of chronic aristolochic acid nephropathy: role of Smad3. Am J Physiol Renal Physiol 298:F1006–F1017

    Article  CAS  PubMed  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12:7–18

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY (2014) Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol 184:409–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory is supported by grants from National Natural Science Foundation of China (National Science Foundation of China 81300580 and 81570623), and by Science and Technological Fund of Anhui Province for Outstanding Youth of China (Grant number: 1608085J07)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, TT., Meng, XM. (2019). TGF-β/Smad and Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_16

Download citation

Publish with us

Policies and ethics