Skip to main content

Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Renal fibrosis is characterized by excessive deposition of extracellular matrix (ECM), leading to destruction of normal kidney architecture and loss of renal function. The activation of α-smooth muscle actin-positive myofibroblasts plays a key role in this process. After kidney injury, profibrotic factors are secreted by injured tubular epithelia and infiltrated inflammatory cells to promote complex cascades of signaling events leading to myofibroblastic activation, proliferation, and ECM production. The origins of myofibroblasts remain controversial, and possibilities include resident fibroblasts, pericytes, bone marrow-derived cells, and endothelial cells. Recent evidence supports the existence of localized fibrogenic niches, which provides a specialized tissue microenvironment for myofibroblastic activation and expansion. Myofibroblasts often undergo epigenetic modifications, leading to their sustained activation and resistance to apoptosis. In this chapter, we discuss the origins, heterogeneity, and activation of myofibroblasts in diseased kidneys. We also highlight novel strategies for the treatment of patients with fibrotic kidney diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai J, Nie J, He J, Guo Q, Li M, Lei Y et al (2015) GQ5 hinders renal fibrosis in obstructive nephropathy by selectively inhibiting TGF-beta-induced Smad3 phosphorylation. J Am Soc Nephrol 26:1827–1838

    Article  CAS  PubMed  Google Scholar 

  • Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P (2018) Anti-fibrotic treatments: a review of clinical evidence. Matrix Biol 69:333–354

    Article  CAS  Google Scholar 

  • Asada N, Takase M, Nakamura J, Oguchi A, Asada M, Suzuki N et al (2011) Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest 121:3981–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avery D, Govindaraju P, Jacob M, Todd L, Monslow J, Puré E (2018) Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biol 67:90–106

    Article  CAS  PubMed  Google Scholar 

  • Barnes JL, Gorin Y (2011) Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int 79:944–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtel W, McGoohan S, Zeisberg EM, Müller GA, Kalbacher H, Salant DJ et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S et al (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bige N, Shweke N, Benhassine S, Jouanneau C, Vandermeersch S, Dussaule J et al (2012) Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction. Kidney Int 81:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Bijkerk R, de Bruin RG, van Solingen C, van Gils JM, Duijs JM, van der Veer EP et al (2016) Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. Kidney Int 89:1268–1280

    Article  CAS  PubMed  Google Scholar 

  • Bolignano D, Zoccali C (2012) Glitazones in chronic kidney disease: potential and concerns. Nutr Metab Cardiovasc Dis 22:167–175

    Article  CAS  PubMed  Google Scholar 

  • Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE et al (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boor P, Floege J (2012) The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 27:3027–3036

    Article  PubMed  Google Scholar 

  • Broekema M, Harmsen MC, van Luyn MJ, Koerts JA, Petersen AH, van Kooten TG et al (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18:165–175

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yang D, Zong H, Zhu L, Wang L, Wang X et al (2017) Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis 6:e375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yang T, Wang MC, Chen DQ, Yang Y, Zhao YY (2018) Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-beta-mediated Smad3 phosphorylation. Phytomedicine 42:207–218

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Fu H, Wu S, Zhu W, Liao J, Hong X et al (2019) Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int 95:62–74

    Article  CAS  PubMed  Google Scholar 

  • Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS (2014) Tenascins in stem cell niches. Matrix Biol 37:112–123

    Article  CAS  PubMed  Google Scholar 

  • Colombaro V, Decleves AE, Jadot I, Voisin V, Giordano L, Habsch I et al (2013) Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury. Nephrol Dial Transplant 28:2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove D, Dufek B, Meehan DT, Delimont D, Hartnett M, Samuelson G et al (2018) Lysyl oxidase like-2 contributes to renal fibrosis in Col4alpha3/Alport mice. Kidney Int 94:303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Solbes AS, Youker K (2017) Epithelial to esenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): role and implications in kidney fibrosis. Results Probl Cell Differ 60:345–372

    CAS  PubMed  Google Scholar 

  • Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T (2007) Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 18:2264–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM, Mosher DF et al (2005) Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 280:18871–18880

    Article  CAS  PubMed  Google Scholar 

  • De Laporte L, Rice JJ, Tortelli F, Hubbell JA (2013) Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PLoS ONE 8:e62076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dees C, Tomcik M, Zerr P, Akhmetshina A, Horn A, Palumbo K et al (2011) Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann Rheum Dis 70:1304–1310

    Article  CAS  PubMed  Google Scholar 

  • Di J, Jiang L, Zhou Y, Cao H, Fang L, Wen P et al (2014) Ets-1 targeted by microRNA-221 regulates angiotensin II-induced renal fibroblast activation and fibrosis. Cell Physiol Biochem 34:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Zhou D, Hao S, Zhou L, He W, Nie J et al (2012) Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 23:801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, Humphreys BD (2013) Wnt4/beta-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol 24:1399–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djudjaj S, Chatziantoniou C, Raffetseder U, Guerrot D, Dussaule J, Boor P et al (2012) Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidney injury. J Pathol 228:286–299

    Article  CAS  PubMed  Google Scholar 

  • Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD et al (2017) Mesenchymal stem cells in fibrotic disease. Cell Stem Cell 21:166–177

    Article  PubMed  CAS  Google Scholar 

  • Eyden B (2008) Translational medicine: the myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med 12:22–37

    Article  CAS  PubMed  Google Scholar 

  • Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipila P, West KA et al (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol 11:233–244

    Article  CAS  PubMed  Google Scholar 

  • Francki A, Sage EH (2001) SPARC and the kidney glomerulus: matricellular proteins exhibit diverse functions under normal and pathological conditions. Trends Cardiovasc Med 11:32–37

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG (2017) The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 127:1600–1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Fries KM, Blieden T, Looney RJ, Sempowski GD, Silvera MR, Willis RA et al (1994) Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol 72:283–292

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Tian Y, Zhou L, Zhou D, Tan RJ, Stolz DB et al (2017) Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J Am Soc Nephrol 28:785–801

    Article  CAS  PubMed  Google Scholar 

  • Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:549–550

    Article  CAS  PubMed  Google Scholar 

  • Gewin L, Zent R, Pozzi A (2017) Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 91:552–560

    Article  CAS  PubMed  Google Scholar 

  • Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H, Versteeg D et al (2018) Single-cell sequencing of the healthy and diseased heart reveals Ckap4 as a new modulator of fibroblasts activation. Circulation 138:166–180

    Article  CAS  PubMed  Google Scholar 

  • Gomez IG, Duffield JS (2014) The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int Suppl 4:26–33

    Article  CAS  Google Scholar 

  • Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A, Arévalo M et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997

    Article  CAS  PubMed  Google Scholar 

  • He W, Dai C (2015) Key fibrogenic signaling. Curr Pathobiol Rep 3:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Xu Y, Koya D, Kanasaki K (2013) Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clin Exp Nephrol 17:488–497

    Article  CAS  PubMed  Google Scholar 

  • Hecker L, Jagirdar R, Jin T, Thannickal VJ (2011) Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 317:1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH et al (2013) Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19:1617–1624

    Article  CAS  PubMed  Google Scholar 

  • Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128:45–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S et al (2009) Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 119:1286–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat M, Gabbiani G (2007) Myofibroblast. Am J Pathol 170:1807–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J et al (2012) Recent developments in myofibroblast biology. Am J Pathol 180:1340–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holdsworth SR, Summers SA (2008) Role of mast cells in progressive renal diseases. J Am Soc Nephrol 19:2254–2261

    Article  CAS  PubMed  Google Scholar 

  • Hsia L, Ashley N, Ouaret D, Wang LM, Wilding J, Bodmer WF (2016) Myofibroblasts are distinguished from activated skin fibroblasts by the expression of AOC3 and other associated markers. Proc Natl Acad Sci USA 113:E2162–E2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Phan SH (2013) Myofibroblasts. Curr Opin Rheumatol 25:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Wu C, Mars WM, Liu Y (2007) Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptor-related protein 1-mediated integrin signaling. J Clin Invest 117:3821–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MS, Moore AL, Longaker MT (2018) A fibroblast is not a fibroblast is not a fibroblast. J Invest Dermatol 138:729–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Tong J, He F, Yu X, Fan L, Hu J et al (2015) MiR-141 regulates TGF-beta1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med 35:311–318

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD (2018) Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–326

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Lin S, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Umezawa A, Takenaka T, Suzuki H, Okada H (2015) The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models. Kidney Int 87:233–238

    Article  CAS  PubMed  Google Scholar 

  • Irifuku T, Doi S, Sasaki K, Doi T, Nakashima A, Ueno T, et al (2016) Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression. Kidney Int 89:147–157

    Article  CAS  PubMed  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones LK, O’Sullivan KM, Semple T, Kuligowski MP, Fukami K, Ma FY et al (2009) IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol Dial Transplant 24:3024–3032

    Article  CAS  PubMed  Google Scholar 

  • Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller A et al (2016) Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 18:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Ahn SH, Choi P, Ko Y, Han SH, Chinga F et al (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46

    Article  CAS  PubMed  Google Scholar 

  • Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN et al (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7:12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T et al (2017) The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv Drug Deliv Rev 121:43–56

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, et al (2009) PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab Invest 89:47–58

    Google Scholar 

  • Kii I, Ito H (2017) Periostin and its interacting proteins in the construction of extracellular architectures. Cell Mol Life Sci 74:4269–4277

    Article  CAS  PubMed  Google Scholar 

  • Kis K, Liu X, Hagood JS (2011) Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med 13:e27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klingberg F, Hinz B, White ES (2013) The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 229:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM et al (2014) Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 207:283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koesters R, Kaissling B, LeHir M, Picard N, Theilig F, Gebhardt R et al (2010) Tubular overexpression of transforming growth tactor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am J Pathol 177:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok HM, Falke LL, Goldschmeding R, Nguyen TQ (2014) Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 10:700–711

    CAS  PubMed  Google Scholar 

  • Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O et al (2015a) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125:2935–2951

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA et al (2015b) Perivascular Gli1 + progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66

    Article  CAS  PubMed  Google Scholar 

  • Kramann R, Wongboonsin J, Chang-Panesso M, Machado FG, Humphreys BD (2017) Gli1(+) pericyte loss induces capillary rarefaction and proximal tubular injury. J Am Soc Nephrol 28:776–784

    Article  CAS  PubMed  Google Scholar 

  • Kubow KE, Vukmirovic R, Zhe L, Klotzsch E, Smith ML, Gourdon D et al (2015) Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun 6:8026

    Article  CAS  PubMed  Google Scholar 

  • Lagares D, Santos A, Grasberger PE, Liu F, Probst CK, Rahimi RA et al (2017) Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med 9:3765

    Article  CAS  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim SI, Choi ME (2015) Therapeutic targets for treating fibrotic kidney diseases. Transl Res 165:512–530

    Article  CAS  PubMed  Google Scholar 

  • Li J, Deane JA, Campanale NV, Bertram JF, Ricardo SD (2007) The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells 25:697–706

    Article  CAS  PubMed  Google Scholar 

  • Li J, Qu X, Bertram JF (2009a) Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol 175:1380–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tan X, Dai C, Stolz DB, Wang D, Liu Y (2009b) Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J Am Soc Nephrol 20:1907–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176:1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Liu BC, Lv LL, Ma KL, Zhang XL, Phillips AO (2011) Monocytes induce proximal tubular epithelial-mesenchymal transition through NF-kappa B dependent upregulation of ICAM-1. J Cell Biochem 112:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Li S, Mariappan N, Megyesi J, Shank B, Kannan K, Theus S et al (2013) Proximal tubule PPARalpha attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. Am J Physiol Renal Physiol 305:F618–F627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE et al (2017) The IL-4 receptor alpha has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int 92:1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipphardt M, Song JW, Matsumoto K, Dadafarin S, Dihazi H, Müller G et al (2017) The third path of tubulointerstitial fibrosis: aberrant endothelial secretome. Kidney Int 92:558–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y (2004) Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 287:F7–F16151

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Zhuang S (2015) Treatment of chronic kidney diseases with histone deacetylase inhibitors. Front Physiol 6:121

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Hu B, Choi YY, Chung M, Ullenbruch M, Yu H et al (2009) Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol 174:1745–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hong Q, Wang Z, Yu Y, Zou X, Xu L (2016) Transforming growth factor-beta-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells. Exp Biol Med 241:265–272

    Article  CAS  Google Scholar 

  • Liu BC, Tang TT, Lv LL, Lan HY (2018) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH et al (2012) Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 23:236–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J et al (2018) Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol 29:1238–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macconi D, Remuzzi G, Benigni A (2014) Key fibrogenic mediators: old players. Renin–angiotensin system. Kidney Int Suppl 4:58–64

    Article  CAS  Google Scholar 

  • Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87:297–307

    Article  PubMed  Google Scholar 

  • Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D’Angelo A et al (2012) Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem 287:1478–1488

    Article  CAS  PubMed  Google Scholar 

  • McVicker BL, Bennett RG (2017) Novel anti-fibrotic therapies. Front Physiol 8:318

    Article  Google Scholar 

  • Meng X, Chung ACK, Lan HY (2013) Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci 124:243–254

    Article  CAS  Google Scholar 

  • Meng X, Tang PM, Li J, Lan HY (2015) TGF-β/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi F, Slowikowski K, Wei K, Marshall JL, Rao DA, Chang SK et al (2018) Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 9:789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munoz-Felix JM, Gonzalez-Nunez M, Martinez-Salgado C, Lopez-Novoa JM (2015) TGF-beta/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 156:44–58

    Article  CAS  PubMed  Google Scholar 

  • Nahrwold ML, Lecky JH, Cohen PJ (1974) The effect of halothane on mitochondrial permeability to NADH. Life Sci 15:1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L (2017) Targeting renal fibrosis: mechanisms and drug delivery systems. Adv Drug Deliv Rev 129:295–307

    Article  PubMed  CAS  Google Scholar 

  • Nightingale J, Patel S, Suzuki N, Buxton R, Takagi KI, Suzuki J et al (2004) Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation. J Am Soc Nephrol 15:21–32

    Article  CAS  PubMed  Google Scholar 

  • Nikolic-Paterson DJ, Wang S, Lan HY (2014) Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl 4:34–38

    Article  CAS  Google Scholar 

  • Novitskaya T, McDermott L, Zhang KX, Chiba T, Paueksakon P, Hukriede NA et al (2014) A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am J Physiol Renal Physiol 306:F496–F504

    Article  CAS  PubMed  Google Scholar 

  • Ostendorf T, Boor P, van Roeyen CR, Floege J (2014) Platelet-derived growth factors (PDGFs) in glomerular and tubulointerstitial fibrosis. Kidney Int Suppl 4:65–69

    Article  CAS  Google Scholar 

  • Phan SH (2008) Biology of fibroblasts and myofibroblasts. Proc Am Thorac Soc 5:334–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Picard N, Baum O, Vogetseder A, Kaissling B, Le Hir M (2008) Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem Cell Biol 130:141–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piersma B, Bank RA, Boersema M (2015) Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med 2:59

    Article  Google Scholar 

  • Poosti F, Bansal R, Yazdani S, Prakash J, Post E, Klok P et al (2015) Selective delivery of IFN-γ to renal interstitial myofibroblasts: a novel strategy for the treatment of renal fibrosis. FASEB J 29:1029–1042

    Article  CAS  PubMed  Google Scholar 

  • Poosti F, Bansal R, Yazdani S, Prakash J, Beljaars L, van den Born J et al (2016) Interferon gamma peptidomimetic targeted to interstitial myofibroblasts attenuates renal fibrosis after unilateral ureteral obstruction in mice. Oncotarget 7:54240–54252

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J (2014) Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat Rev Nephrol 10:625–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roufosse C, Bou-Gharios G, Prodromidi E, Alexakis C, Jeffery R, Khan S et al (2006) Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J Am Soc Nephrol 17:775–782

    Article  CAS  PubMed  Google Scholar 

  • Samuel CS, Hewitson TD (2009) Relaxin and the progression of kidney disease. Curr Opin Nephrol Hypertens 18:9–14

    Article  CAS  PubMed  Google Scholar 

  • Sandbo N, Dulin N (2011) Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 158:181–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Yanagita M (2017) Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflamm Regen 37:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato Y, Mii A, Hamazaki Y, Fujita H, Nakata H, Masuda K et al (2016) Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 1:e87680

    Article  PubMed  PubMed Central  Google Scholar 

  • Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L et al (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siani A, Tirelli N (2014) Myofibroblast Differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal 21:768–785

    Article  CAS  PubMed  Google Scholar 

  • Singer II (1979) The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 16:675–685

    Article  CAS  PubMed  Google Scholar 

  • Snyder JJ, Foley RN, Collins AJ (2009) Prevalence of CKD in the United States: a sensitivity analysis using the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Kidney Dis 53:218–228

    Article  PubMed  Google Scholar 

  • Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W et al (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun K, Chang Y, Reed NI, Sheppard D (2016a) α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis. Am J Physiol Lung Cell Mol Physiol 310:L824–L836

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YBY, Qu X, Caruana G, Li J (2016b) The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Differentiation 92:102–107

    Article  CAS  PubMed  Google Scholar 

  • Tabib T, Morse C, Wang T, Chen W, Lafyatis R (2018) SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J Invest Dermatol 138:802–810

    Article  CAS  PubMed  Google Scholar 

  • Tampe B, Tampe D, Muller CA, Sugimoto H, LeBleu V, Xu X et al (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 4:84–90

    Article  CAS  Google Scholar 

  • Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis 2:136–144

    Article  Google Scholar 

  • Tang O, Chen X, Shen S, Hahn M, Pollock CA (2013) MiRNA-200b represses transforming growth factor-β1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am J Physiol Renal Physiol 304:F1266–F1273

    Article  CAS  PubMed  Google Scholar 

  • Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH, Sheerin NS et al (2010) Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int 78:351–362

    Article  CAS  PubMed  Google Scholar 

  • Tsou P, Haak AJ, Khanna D, Neubig RR (2014) Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 307:C2–C13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van De Water L, Varney S, Tomasek JJ (2013) Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Adv Wound Care 2:122–141

    Article  Google Scholar 

  • Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J et al (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:4573

    Article  CAS  Google Scholar 

  • von Holst A (2008) Tenascin C in stem cell niches: redundant, permissive or instructive? Cells Tissues Organs 188:170–177

    Article  CAS  Google Scholar 

  • Walraven M, Hinz B (2018) Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol 72:205–224

    Article  CAS  Google Scholar 

  • Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF et al (2017a) Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol 28:2053–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Qian J, Zhao X, Xing C, Sun B (2017b) β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis. J Pharmacol Sci 133:203–213

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Luo M, Song E, Zhou Z, Ma T, Wang J, et al (2018, in press) Long noncoding RNA Inc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med

    Google Scholar 

  • Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N et al (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418105

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Humphreys BD (2017) The promise of single-cell RNA sequencing for kidney disease investigation. Kidney Int 92:1334–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li H et al (2014) The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol 55:65–71

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Tang W, Yuan Q, Peng L, Yu P (2015) Epigenetic repression of Kruppel-like factor 4 through Dnmt1 contributes to EMT in renal fibrosis. Int J Mol Med 35:1596–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y et al (2018) Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 22:3625–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhang Z, Yang J, Mitch WE, Wang Y (2015) JAK3/STAT6 Stimulates bone marrow-derived fibroblast activation in renal fibrosis. J Am Soc Nephrol 26:3060–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhang Z, Jia L, Wang Y (2016) Role of bone marrow-derived fibroblasts in renal fibrosis. Front Physiol 7:61

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Dai C, Liu Y (2003) Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 163:621–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdani S, Bansal R, Prakash J (2017) Drug targeting to myofibroblasts: implications for fibrosis and cancer. Adv Drug Deliv Rev 121:101–116

    Article  CAS  PubMed  Google Scholar 

  • Yokoi H, Mukoyama M (2017) Analysis of pathological activities of CCN proteins in fibrotic diseases: kidney fibrosis. Methods Mol Biol 1489:431–443

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg EM, Zeisberg M (2013) The role of promoter hypermethylation in fibroblast activation and fibrogenesis. J Pathol 229:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C et al (2017) MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell 16:387–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Liu Y (2016a) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol 12:68–70

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Liu Y (2016b) Therapy for kidney fibrosis: is the Src kinase a potential target? Kidney Int 89:12–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Liu Y (2016c) Wnt/β-catenin signaling and renin–angiotensin system in chronic kidney disease. Curr Opin Nephrol Hypertens 25:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Tan RJ, Zhou L, Li Y, Liu Y (2013a) Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep 3:1878

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Li Y, Zhou D, Tan RJ, Liu Y (2013b) Loss of Klotho contributes to kidney injury by derepression of Wnt/beta-catenin signaling. J Am Soc Nephrol 24:771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Li Y, Zhou L, Tan RJ, Xiao L, Liang M et al (2014a) Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 25:2187–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Chung AC, Huang XR, Dong Y, Yu X, Lan HY (2014b) Identification of novel long noncoding RNAs associated with TGF-beta/Smad3-mediated renal inflammation and fibrosis by RNA sequencing. Am J Pathol 184:409–417

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Fu H, Zhang L, Zhang K, Min Y, Xiao L et al (2017) Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J Am Soc Nephrol 28:2322–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zhou S, Yang P, Tian Y, Feng Z, Xie XQ et al (2018a) Targeted inhibition of the type 2 cannabinoid receptor is a novel approach to reduce renal fibrosis. Kidney Int 4:756–772

    Article  CAS  Google Scholar 

  • Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S (2018) Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J:j201800237R

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China Grant 81521003 and 81770715, an American Society of Nephrology Gottschalk Award, an American Heart Association Fellow-to-Faculty award, and NIH grants DK079307, DK064005, and DK106049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, Q., Tan, R.J., Liu, Y. (2019). Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_12

Download citation

Publish with us

Policies and ethics