Skip to main content

How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

The renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including ischemia, proteinuria, toxins, and metabolic disorders. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney disease. In response to injury, tubular epithelial cells (TECs) can synthesize and secrete varieties of bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the TECs also aggravate immune responses. Necroinflammation, an auto-amplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, TECs also play an active role in progressive renal injury via mechanisms associated with the conversion into collagen-producing fibroblast phenotype, cell cycle arrest at both G1/S and G2/M checkpoints, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives AKI and CKD is necessary for the development of therapeutics to halt the progression of CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hägele H, Lichtnekert J et al (2012) Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 23:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders HJ (2010) Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol 21:1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ (2016) Of Inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J Am Soc Nephrol 27:2564–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders HJ, Muruve DA (2011) The inflammasomes in kidney disease. J Am Soc Nephrol 22:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ, Schaefer L (2014) Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 25:1387–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders HJ, Banas B, Schlöndorff D (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15:854–867

    Article  CAS  PubMed  Google Scholar 

  • Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477

    Article  CAS  PubMed  Google Scholar 

  • Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32:4–16

    Article  CAS  PubMed  Google Scholar 

  • Baek JH, Zeng R, Weinmann-Menke J, Valerius MT, Wada Y, Ajay AK et al (2015) IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease. J Clin Invest 125:3198–3214

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohle A, Christ H, Grund KE, Mackensen S (1979) The role of the interstitium of the renal cortex in renal disease. Contrib Nephrol 16:109–114

    Article  CAS  PubMed  Google Scholar 

  • Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA et al (2013) TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392

    Article  CAS  PubMed  Google Scholar 

  • Cain JE, Rosenblum ND (2011) Control of mammalian kidney development by the Hedgehog signaling pathway. Pediatr Nephrol 26:1365–1371

    Article  PubMed  Google Scholar 

  • Campbell MT, Hile KL, Zhang H, Asanuma H, Vanderbrink BA, Rink RR et al (2011) Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res 168:e61–e69

    Article  CAS  PubMed  Google Scholar 

  • Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30:575–583

    Article  CAS  PubMed  Google Scholar 

  • Canaud G, Brooks CR, Kishi S, Taguchi K, Nishimura K, Magassa S et al (2019) Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci Transl Med 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casarini DE, Boim MA, Stella RC, Krieger-Azzolini MH, Krieger JE, Schor N (1997) Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron. Am J Physiol 272:F405–F409

    Article  CAS  PubMed  Google Scholar 

  • Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, Flavell RA et al (2013) Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci U S A 110:1851–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang A, Ko K, Clark MR (2014) The emerging role of the inflammasome in kidney diseases. Curr Opin Nephrol Hypertens 23:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:121ra18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Liu BC, Zhang XL, Zhang JD, Liu H, Li MX (2006) Influence of connective tissue growth factor antisense oligonucleotide on angiotensin II-induced epithelial mesenchymal transition in HK2 cells. Acta Pharmacol Sin 27:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Chung AC, Lan HY (2011) Chemokines in renal injury. J Am Soc Nephrol 22:802–809

    Article  CAS  PubMed  Google Scholar 

  • Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C et al (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448

    Article  PubMed  Google Scholar 

  • Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dear JW, Yasuda H, Hu X, Hieny S, Yuen PS, Hewitt SM et al (2006) Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: acute renal failure is dependent on MyD88 but not renal cell apoptosis. Kidney Int 69:832–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I (2011) Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol 31:1796–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Zhou D, Hao S, Zhou L, He W, Nie J et al (2012) Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 23:801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding LH, Liu D, Xu M, Wu M, Liu H, Tang RN et al (2015) TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. Int J Biochem Cell Biol 69:114–120

    Article  CAS  PubMed  Google Scholar 

  • DiRocco DP, Bisi J, Roberts P, Strum J, Wong KK, Sharpless N et al (2014) CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am J Physiol Renal Physiol 306:F379–F388

    Article  CAS  PubMed  Google Scholar 

  • Disteldorf EM, Krebs CF, Paust HJ, Turner JE, Nouailles G, Tittel A et al (2015) CXCL5 drives neutrophil recruitment in TH17-mediated GN. J Am Soc Nephrol 26:55–66

    Article  CAS  PubMed  Google Scholar 

  • Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Achkar TM, Dagher PC (2006) Renal Toll-like receptors: recent advances and implications for disease. Nat Clin Pract Nephrol 2:568–581

    Article  CAS  PubMed  Google Scholar 

  • El-Achkar TM, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC (2006) Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290:F1034–F1043

    Article  CAS  PubMed  Google Scholar 

  • Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipilä P, West KA et al (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC et al (1999) Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H et al (2003) CCR39 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14:2503–2515

    Article  PubMed  Google Scholar 

  • Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM et al (2012) Lysophosphatidic acid increases proximal tubule cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2- and Gαq-mediated Rho and αvβ6 integrin-dependent activation of TGF-β. Am J Pathol 181:1236–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin L, Zent R, Pozzi A (2017) Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int 91:552–560

    Article  CAS  PubMed  Google Scholar 

  • Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J (2010) The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 6:224–235

    Article  CAS  PubMed  Google Scholar 

  • Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S et al (2015) Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125:141–156

    Article  PubMed  Google Scholar 

  • Grande MT, Sánchez-Laorden B, López-Blau C, De Frutos CA, Boutet A, Arévalo M et al (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997

    Article  CAS  PubMed  Google Scholar 

  • Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T et al (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82:172–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol 20:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrich WL, McAllister EA, Eskue A, Miller T, Moe OW (1996) Renin regulation in cultured proximal tubular cells. Hypertension 27:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2014) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55:561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR et al (2006) Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med 354:131–140

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY (2012) Yes, AKI truly leads to CKD. J Am Soc Nephrol 23:967–969

    Article  CAS  PubMed  Google Scholar 

  • Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG (2015) GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 26:1334–1345

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD, Xu F, Sabbisetti V, Grgic I, Movahedi Naini S, Wang N et al (2013) Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 123:4023–4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignotz RA, Endo T, Massagué J (1987) Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J Biol Chem 262:6443–6446

    CAS  PubMed  Google Scholar 

  • Jenkins RH, Davies LC, Taylor PR, Akiyama H, Cumbes B, Beltrami C et al (2014) miR-192 induces G2/M growth arrest in aristolochic acid nephropathy. Am J Pathol 184:996–1009

    Article  CAS  PubMed  Google Scholar 

  • Jevnikar AM, Brennan DC, Singer GG, Heng JE, Maslinski W, Wuthrich RP et al (1991) Stimulated kidney tubular epithelial cells express membrane associated and secreted TNF alpha. Kidney Int 40:203–211

    Article  CAS  PubMed  Google Scholar 

  • Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T et al (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F et al (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Huang S, Reidy K, Han SH, Chinga F, Susztak K (2016) Sox9-Positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep 14:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Ren S, Duffield JS (2013) Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 229:221–231

    Article  CAS  PubMed  Google Scholar 

  • Kimmelstiel P, Wilson C (1936) Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 12:83–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobori H, Urushihara M (2013) Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch 465:3–12

    CAS  PubMed  Google Scholar 

  • Kobori H, Nangaku M, Navar LG, Nishiyama A (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Samoylenko A, Vainio SJ (2015) Exosomes as renal inductive signals in health and disease, and their application as diagnostic markers and therapeutic agents. Front Cell Dev Biol 3:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Krautwald S, Linkermann A (2014) The fire within: pyroptosis in the kidney. Am J Physiol Renal Physiol 306:F168–F169

    Article  CAS  PubMed  Google Scholar 

  • Lai W, Tang Y, Huang XR, Ming-Kuen Tang P, Xu A, Szalai AJ et al (2016) C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney Int 90:610–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG et al (2012) PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 302:F1210–F1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leelahavanichkul A, Huang Y, Hu X, Zhou H, Tsuji T, Chen R et al (2011) Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int 80:1198–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ et al (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leemans JC, Butter LM, Pulskens WP, Teske GJ, Claessen N, van der Poll T et al (2009) The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury. PLoS ONE 4:e5704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leemans JC, Kors L, Anders HJ, Florquin S (2014) Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol 10:398–414

    Article  CAS  PubMed  Google Scholar 

  • Leung JC, Chan LY, Tang SC, Lam MF, Chow CW, Lim AI et al (2011) Oxidative damages in tubular epithelial cells in IgA nephropathy: role of crosstalk between angiotensin II and aldosterone. J Transl Med 9:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Nord EP (2002) CD40 ligation stimulates MCP-1 and IL-8 production, TRAF6 recruitment, and MAPK activation in proximal tubule cells. Am J Physiol Renal Physiol 282:F1020–F1033

    Article  CAS  PubMed  Google Scholar 

  • Li H, Nord EP (2009) IL-8 amplifies CD40/CD154-mediated ICAM-1 production via the CXCR-1 receptor and p38-MAPK pathway in human renal proximal tubule cells. Am J Physiol Renal Physiol 296:F438–F445

    Article  CAS  PubMed  Google Scholar 

  • Li ZI, Chung AC, Zhou L, Huang XR, Liu F, Fu P et al (2011) C-reactive protein promotes acute renal inflammation and fibrosis in unilateral ureteral obstructive nephropathy in mice. Lab Invest 91:837–851

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Lv LL, Tang TT, Wang B, Feng Y, Zhou LT et al (2019) HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney Int 95:388–404

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Yiu WH, Wu HJ, Chan LY, Leung JC, Au WS et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23:86–102

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Yiu WH, Li RX, Wu HJ, Wong DW, Chan LY et al (2013) The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int 83:887–900

    Article  CAS  PubMed  Google Scholar 

  • Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14:759–767

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2010) New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222

    Article  CAS  PubMed  Google Scholar 

  • Liu BC, Chen L, Sun J, Huang HQ, Ma KL, Liu H et al (2006) Connective tissue growth factor-mediated angiotensin II-induced hypertrophy of proximal tubular cells. Nephron Exp Nephrol 103:e16–e26

    Article  CAS  PubMed  Google Scholar 

  • Liu XC, Liu BC, Zhang XL, Li MX, Zhang JD (2007) Role of ERK1/2 and PI3-K in the regulation of CTGF-induced ILK expression in HK-2 cells. Clin Chim Acta 382:89–94

    Article  CAS  PubMed  Google Scholar 

  • Liu BC, Gao J, Li Q, Xu LM (2009) Albumin caused the increasing production of angiotensin II due to the dysregulation of ACE/ACE2 expression in HK2 cells. Clin Chim Acta 403:23–30

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Chen HY, Huang XR, Chung AC, Zhou L, Fu P et al (2011) C-reactive protein promotes diabetic kidney disease in a mouse model of type 1 diabetes. Diabetologia 54:2713–2723

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang JR, He YN, Cai GY, Zhang JG, Lin LR et al (2012) Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl Res 159:454–463

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Xu M, Ding LH, Lv LL, Liu H, Ma KL et al (2014) Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 57:7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Wen Y, Tang TT, Lv LL, Tang RN, Liu H et al (2015) Megalin/cubulin-lysosome-mediated albumin reabsorption is involved in the tubular cell activation of NLRP3 inflammasome and tubulointerstitial inflammation. J Biol Chem 290:18018–18028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu BC, Tang TT, Lv LL, Lan HY (2018) Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 93:568–579

    Article  CAS  PubMed  Google Scholar 

  • Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL et al (2018) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 29:919–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V, Welborn J et al (2016) Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J Am Soc Nephrol 27:781–790

    Article  CAS  PubMed  Google Scholar 

  • Macconi D, Remuzzi G, Benigni A (2014) Key fibrogenic mediators: old players. Renin-angiotensin system. Kidney Int Suppl 4:58–64

    Article  CAS  Google Scholar 

  • Mackensen-Haen S, Bader R, Grund KE, Bohle A (1981) Correlations between renal cortical interstitial fibrosis, atrophy of the proximal tubules and impairment of the glomerular filtration rate. Clin Nephrol 15:167–171

    CAS  PubMed  Google Scholar 

  • Mao J, Kim BM, Rajurkar M, Shivdasani RA, McMahon AP (2010) Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137:1721–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massy ZA, Stenvinkel P, Drueke TB (2009) The role of oxidative stress in chronic kidney disease. Semin Dial 22:405–408

    Article  PubMed  Google Scholar 

  • Megyesi J, Tarcsafalvi A, Li S, Hodeify R, Seng NS, Portilla D et al (2015) Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis. Am J Physiol Renal Physiol 308:F122–F130

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD et al (2009) CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 119:2330–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison EE, Bailey MA, Dear JW (2016) Renal extracellular vesicles: from physiology to clinical application. J Physiol 594:5735–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudaliar H, Pollock C, Komala MG, Chadban S, Wu H, Panchapakesan U (2013) The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol 305:F143–F154

    Article  CAS  PubMed  Google Scholar 

  • Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S et al (2016a) Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun 7:10274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulay SR, Linkermann A, Anders HJ (2016b) Necroinflammation in kidney disease. J Am Soc Nephrol 27:27–39

    Article  CAS  PubMed  Google Scholar 

  • Nie J, Hou FF (2012) Role of reactive oxygen species in the renal fibrosis. Chin Med J (Engl) 125:2598–2602

    CAS  Google Scholar 

  • Okusa MD, Chertow GM, Portilla D, Acute Kidney Injury Advisory Group of the American Society of Nephrology (2009) The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clin J Am Soc Nephrol 4:520–522

    Google Scholar 

  • Oliver J, MacDowell M, Lee YC (1954) Cellular mechanisms of protein metabolism in the nephron. I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J Exp Med 99:589–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovadya Y, Krizhanovsky V (2015) A new twist in kidney fibrosis. Nat Med 21:975–977

    Article  CAS  PubMed  Google Scholar 

  • Pegues MA, McCrory MA, Zarjou A, Szalai AJ (2013) C-reactive protein exacerbates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 304:F1358–F1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prunotto M, Budd DC, Gabbiani G, Meier M, Formentini I, Hartmann G et al (2012) Epithelial-mesenchymal crosstalk alteration in kidney fibrosis. J Pathol 228:131–147

    Article  CAS  PubMed  Google Scholar 

  • Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK et al (2010) TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 21:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB (2012) HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol 303:F873–F885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich H, Tritchler D, Herzenberg AM, Kassiri Z, Zhou X, Gao W et al (2005) Albumin activates ERK via EGF receptor in human renal epithelial cells. J Am Soc Nephrol 16:1266–1278

    Article  CAS  PubMed  Google Scholar 

  • Risdon RA, Sloper JC, De Wardener HE (1968) Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 2:363–366

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelling JR (2016) Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol 31:693–706

    Article  PubMed  Google Scholar 

  • Sedeek M, Nasrallah R, Touyz RM, Hébert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24:1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeoka AA, Kambo A, Mathison JC, King AJ, Hall WF, da Silva Correia J et al (2010) Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. J Immunol 184:2297–2304

    Article  CAS  PubMed  Google Scholar 

  • Sibony M, Gasc JM, Soubrier F, Alhenc-Gelas F, Corvol P (1993) Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme. Hypertension 21:827–835

    Article  CAS  PubMed  Google Scholar 

  • Skuginna V, Lech M, Allam R, Ryu M, Clauss S, Susanti HE et al (2011) Toll-like receptor signaling and SIGIRR in renal fibrosis upon unilateral ureteral obstruction. PLoS ONE 6:e19204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC (2012) Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton) 17:311–321

    Article  CAS  Google Scholar 

  • Strutz FM (2009) EMT and proteinuria as progression factors. Kidney Int 75:475–481

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99

    Article  CAS  PubMed  Google Scholar 

  • Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M et al (2016) Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27:2393–2406

    Article  PubMed  Google Scholar 

  • Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 4:84–90

    Article  CAS  Google Scholar 

  • Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis (Basel) 2:136–144

    Article  Google Scholar 

  • Tang SC, Lai KN (2012) The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant 27:3049–3056

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Liu N, Tolbert E, Ponnusamy M, Ma L, Gong R et al (2013) Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Am J Pathol 183:160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Huang XR, Lv J, Chung AC, Zhang Y, Chen JZ et al (2014) C-reactive protein promotes acute kidney injury by impairing G1/S-dependent tubular epithelium cell regeneration. Clin Sci (Lond) 126:645–659

    Article  CAS  Google Scholar 

  • Terada Y, Tanaka H, Okado T, Shimamura H, Inoshita S, Kuwahara M et al (2003) Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol 14:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. New Engl J Med 334:1448–1460

    Article  CAS  PubMed  Google Scholar 

  • Thomas ME, Harris KP, Walls J, Furness PN, Brunskill NJ (2002) Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol Renal Physiol 283:F640–F647

    Article  PubMed  Google Scholar 

  • Trionfini P, Benigni A, Remuzzi G (2015) MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11:23–33

    Article  CAS  PubMed  Google Scholar 

  • Urushihara M, Kagami S (2017) Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatr Nephrol 32:1471–1479

    Article  PubMed  Google Scholar 

  • van Timmeren MM, Bakker SJ, Stegeman CA, Gans RO, van Goor H (2005) Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis. Nephrol Dial Transplant 20:2349–2357

    Article  PubMed  CAS  Google Scholar 

  • Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F et al (2008) Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 295:F1563–F1573

    Article  CAS  PubMed  Google Scholar 

  • Vío CP, Jeanneret VA (2003) Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. Kidney Int Suppl 86:S57–S63

    Article  Google Scholar 

  • Waikar SS, Winkelmayer WC (2009) Chronic on acute renal failure: long-term implications of severe acute kidney injury. JAMA 302:1227–1229

    Article  CAS  PubMed  Google Scholar 

  • Wallach D, Kang TB, Kovalenko A (2014) Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol 14:51–59

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC (1997) Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 8:1537–1545

    CAS  PubMed  Google Scholar 

  • Wang Y, Rangan GK, Goodwin B, Tay YC, Harris DC (2000) Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-kappaB dependent. Kidney Int 57:2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wen Y, Lv LL, Liu H, Tang RN, Ma KL et al (2015a) Involvement of endoplasmic reticulum stress in angiotensin II-induced NLRP3 inflammasome activation in human renal proximal tubular cells in vitro. Acta Pharmacol Sin 36:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chang J, Yao B, Niu A, Kelly E, Breeggemann MC et al (2015b) Proximal tubule-derived colony stimulating factor-1 mediates polarization of renal macrophages and dendritic cells, and recovery in acute kidney injury. Kidney Int 88:1274–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K et al (2016) NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 7:54290–54302

    PubMed  PubMed Central  Google Scholar 

  • Wolf G, Mueller E, Stahl RA, Ziyadeh FN (1993) Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J Clin Invest 92:1366–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf G, Ziyadeh FN, Stahl RA (1999) Angiotensin II stimulates expression of transforming growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol Med (Berl) 77:556–564

    Article  CAS  Google Scholar 

  • Wolf G, Wenzel U, Hannken T, Stahl RA (2001) Angiotensin II induces p27(Kip1) expression in renal tubules in vivo: role of reactive oxygen species. J Mol Med (Berl) 79:382–389

    Article  CAS  Google Scholar 

  • Wolfs TG, Buurman WA, van Schadewijk A, de Vries B, Daemen MA, Hiemstra PS et al (2002) In vivo expression of Toll- like receptor 2 and 4 by renal epithelial cells: IFN-γ and TNF-α mediated up-regulation during inflammation. J Immunol 168:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR et al (2010) HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol 21:1878–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH et al (2013) Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol 182:118–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF et al (2016) Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol 27:1727–1740

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Fogo AB (2010) Cell senescence in the aging kidney. J Am Soc Nephrol 21:1436–1439

    Article  PubMed  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JR, Yao FH, Zhang JG, Ji ZY, Li KL, Zhan J et al (2014) Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol 306:F75–F84

    Article  CAS  PubMed  Google Scholar 

  • Yard BA, Daha MR, Kooymans-Couthino M, Bruijn JA, Paape ME, Schrama E et al (1992) IL-1 alpha stimulated TNF alpha production by cultured human proximal tubular epithelial cells. Kidney Int 42:383–389

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  CAS  PubMed  Google Scholar 

  • Zhang JD, Liu BC (2011) Angiotensin II, a missing node in new pathogenic glomerulotubular feedback loop. Med Hypotheses 77:595–597

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z (2016) Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol 311:F844–F851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Liu Y (2016) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol 12:68–70

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY (2010) Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J Am Soc Nephrol 21:31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y (2012) Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int 82:537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Li Y, Zhou L, Tan RJ, Xiao L, Liang M et al (2014) Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 25:2187–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J et al (2015) Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 26:107–120

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Tan RJ, Fu H, Liu Y (2016) Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 96:156–167

    Article  CAS  PubMed  Google Scholar 

  • Zuk A, Gershenovich M, Ivanova Y, MacFarland RT, Fricker SP, Ledbetter S (2014) CXCR4 antagonism as a therapeutic approach to prevent acute kidney injury. Am J Physiol Renal Physiol 307:F783–F797

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter was modified from a paper reported by our group in Kidney Int (Liu et al. 2018). The related contents are reused with permission.

This study was supported by grants from the National Key Research and Development Program of China (2018YFC1314004), the National Natural Scientific Foundation (No. 81720108007, 81130010, 81470997, and 81670696), and the Clinic Research Center of Jiangsu Province (No. BL2014080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Cheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, BC., Tang, TT., Lv, LL. (2019). How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_11

Download citation

Publish with us

Policies and ethics