Skip to main content
Log in

Control of mammalian kidney development by the Hedgehog signaling pathway

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The kidney is the most common site of congenital malformations that result in impaired renal function. Yet, the molecular mechanisms that control renal malformations are poorly understood. The Hedgehog signaling pathway plays critical roles during mammalian organogenesis. Aberrant Hedgehog signaling results in severe congenital abnormalities, including renal malformations. Here, we review the current body of knowledge on Hedgehog signaling during renal morphogenesis and highlight the gaps in our understanding. Furthermore, we propose mechanisms by which Hedgehog signaling contributes to both normal and abnormal renal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  2. Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui CC, Rosenblum ND (2006) GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133:569–578

    Article  CAS  PubMed  Google Scholar 

  3. Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20:58–61

    Article  CAS  PubMed  Google Scholar 

  4. Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086

    Article  CAS  PubMed  Google Scholar 

  5. Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448

    Article  CAS  PubMed  Google Scholar 

  6. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851

    Article  CAS  PubMed  Google Scholar 

  7. Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr, Scott MP (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671

    Article  CAS  PubMed  Google Scholar 

  8. Smyth I, Narang MA, Evans T, Heimann C, Nakamura Y, Chenevix-Trench G, Pietsch T, Wicking C, Wainwright BJ (1999) Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene inbasal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 8:291–297

    Article  CAS  PubMed  Google Scholar 

  9. Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310

    Article  CAS  PubMed  Google Scholar 

  10. Wilson CW, Chuang PT (2010) Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 137:2079–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen CH, von Kessler DP, Park W, Wang B, Ma Y, Beachy PA (1999) Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98:305–316

    Article  CAS  PubMed  Google Scholar 

  12. Lum L, Zhang C, Oh S, Mann RK, von Kessler DP, Taipale J, Weis-Garcia F, Gong R, Wang B, Beachy PA (2003) Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12:1261–1274

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005) Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell 8:267–278

    Article  CAS  PubMed  Google Scholar 

  14. Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL (2002) Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129:4753–4761

    Article  CAS  PubMed  Google Scholar 

  15. Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593–1605

    CAS  PubMed  Google Scholar 

  16. Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312

    CAS  PubMed  Google Scholar 

  17. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, Hui CC, Rosenblum ND (2009) GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One 4:e7313

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jenkins D, Winyard PJ, Woolf AS (2007) Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J Anat 211:620–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hall JG, Pallister PD, Clarren SK, Beckwith JB, Wiglesworth FW, Fraser FC, Cho S, Benke PJ, Reed SD (1980) Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly—a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 7:47–74

    Article  CAS  PubMed  Google Scholar 

  21. Pallister PD, Hecht F, Herrman J (1989) Three additional cases of the congenital hypothalamic "hamartoblastoma" (Pallister–Hall) syndrome. Am J Med Genet 33:500–501

    Article  CAS  PubMed  Google Scholar 

  22. Sama A, Mason JD, Gibbin KP, Young ID, Hewitt M (1994) The Pallister–Hall syndrome. J Med Genet 31:740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RC, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GC, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang S, Graham JM Jr, Olney AH, Biesecker LG (1997) GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 15:266–268

    Article  CAS  PubMed  Google Scholar 

  25. Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V (2004) Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype-phenotype correlations. Hum Mutat 24:43–51

    Article  CAS  PubMed  Google Scholar 

  26. Benzacken B, Siffroi JP, Le Bourhis C, Krabchi K, Joye N, Maschino F, Viguie F, Soulie J, Gonzales M, Migne G, Bucourt M, Encha-Razavi F, Carbillon L, Taillemite JL (1997) Different proximal and distal rearrangements of chromosome 7q associated with holoprosencephaly. J Med Genet 34:899–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masuno M, Fukushima Y, Sugio Y, Ikeda M, Kuroki Y (1990) Two unrelated cases of single maxillary central incisor with 7q terminal deletion. Jinrui Idengaku Zasshi 35:311–317

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Spitz L, Hayward R, Kiely E, Hall CM, O'Donoghue DP, Palmer R, Goodman FR, Scambler PJ, Winter RM, Reardon W (1999) Sacral dysgenesis associated with terminal deletion of chromosome 7q: a report of two families. Eur J Pediatr 158:902–905

    Article  CAS  PubMed  Google Scholar 

  29. Weber S, Landwehr C, Renkert M, Hoischen A, Wuhl E, Denecke J, Radlwimmer B, Haffner D, Schaefer F, Weber RG (2010) Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant. doi:https://doi.org/10.1093/ndt/gfq400

  30. Donnai D, Young ID, Owen WG, Clark SA, Miller PF, Knox WF (1986) The lethal multiple congenital anomaly syndrome of polydactyly, sex reversal, renal hypoplasia, and unilobular lungs. J Med Genet 23:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neri G, Gurrieri F, Zanni G, Lin A (1998) Clinical and molecular aspects of the Simpson–Golabi–Behmel syndrome. Am J Med Genet 79:279–283

    Article  CAS  PubMed  Google Scholar 

  32. Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, Neri G, Cao A, Forabosco A, Schlessinger D (1996) Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat Genet 12:241–247

    Article  CAS  PubMed  Google Scholar 

  33. Capurro MI, Li F, Filmus J (2009) Overgrowth of a mouse model of Simpson–Golabi–Behmel syndrome is partly mediated by Indian hedgehog. EMBO Rep 10:901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14:700–711

    Article  CAS  PubMed  Google Scholar 

  35. Gershoni-Baruch R, Nachlieli T, Leibo R, Degani S, Weissman I (1992) Cystic kidney dysplasia and polydactyly in 3 sibs with Bardet–Biedl syndrome. Am J Med Genet 44:269–273

    Article  CAS  PubMed  Google Scholar 

  36. Pan J, Wang Q, Snell WJ (2005) Cilium-generated signaling and cilia-related disorders. Lab Invest 85:452–463

    Article  CAS  PubMed  Google Scholar 

  37. Bose J, Grotewold L, Ruther U (2002) Pallister-Hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 11:1129–1135

    Article  CAS  PubMed  Google Scholar 

  38. Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, Jain S, Kuehn MR, Capecchi MR, Chen F (2010) Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Dev Biol 340:518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116:663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Financial support

This work was supported by grants awarded by the Canadian Institute of Health Research, the Kidney Foundation of Canada, and the Canada Research Chair Program (to N.D.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cain, J.E., Rosenblum, N.D. Control of mammalian kidney development by the Hedgehog signaling pathway. Pediatr Nephrol 26, 1365–1371 (2011). https://doi.org/10.1007/s00467-010-1704-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1704-x

Keywords

Navigation