Skip to main content

Diversity of Lichen Photobionts: Their Coevolution and Bioprospecting Potential

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Lichens are the symbiotic association of green algae (phycobiont) or blue-green algae (cyanobiont) with fungus (mycobiont). Lichen-forming fungi consist of about 20,000 species, whereas the known photobionts are only about 156 species from 56 genera. A confounding reason for this disparity in the species richness is that most of the lichenologists are mycologists and their focus is on the mycobionts rather than photobionts. Therefore, mycobionts are comparatively well-characterized while the real diversity of photobionts remain elusive. Diversity and phylogeny of major photobiont lineages described till date are comprehensively covered in this systematic review, along with the data on ecology, patterns of phylogeography, and evolution. Current understanding of photobionts described from the Indian subcontinent is summarized revealing significant knowledge gaps in this field. Given that photobionts have relatively simple morphology and morphological plasticity, the relevance of DNA sequence-based molecular systematics for photobiont characterization is highlighted, and other challenges in photobiont research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1982) Algal/fungal symbioses. Progress in Phycological Research, pp 179–233

    Google Scholar 

  • Ahmadjian V (1987) Coevolution in lichens. Ann N Y Acad Sci 503(1):307–315

    Article  Google Scholar 

  • Ahmadjian V (1988) The lichen alga Trebouxia: does it occur free-living? Plant Syst Evol 158:243–247

    Article  Google Scholar 

  • Ahmadjian V (1993a) The lichen photobiont: what can it tell us about lichen systematics? Bryologist 96:310–313

    Article  Google Scholar 

  • Ahmadjian V (1993b) The lichen symbiosis. Wiley, New York, pp 30–52

    Google Scholar 

  • Ahmadjian V, Jacobs J (1983) Algal-fungal relationships in lichens: recognition, synthesis, and development [Phycobionts]. In: Goffpp LJ (ed) Algal symbiosis: a continuum of interaction strategies. Cambridge University Press, Cambridge, pp 147–171

    Google Scholar 

  • Anna V, Lyudmyla D, Rai H, Upreti DK, Rai H, Upreti D (2013) Photobiont diversity of soil crust lichens along substrate ecology and altitudinal gradients in Himalayas: a case study from Garhwal Himalaya. Terricolous Lichens in India: Volume 1: Diversity Patterns and Distribution Ecology pp 73–87

    Google Scholar 

  • Barrett J (1983) Plant-fungus symbioses

    Google Scholar 

  • Bast F (2013) Sequence similarity search, multiple sequence alignment, model selection, distance matrix and phylogeny reconstruction. Nature Protocol Exchange

    Google Scholar 

  • Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510

    Article  Google Scholar 

  • Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720

    Article  CAS  Google Scholar 

  • Bhattacharya D, Friedl T, Damberger S (1996) Nuclear-encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae. Mol Biol Evol 13:978–989

    Article  CAS  PubMed  Google Scholar 

  • Brickley MR (2017) Development of a live cell imaging method for mitochondria in Trebouxia photobionts. Lichenologist 49:275–286

    Article  Google Scholar 

  • Bubrick P (1988) Effects of symbiosis on the photobiont. CRC Handbook Lichenol 2:133–144

    Google Scholar 

  • Buckley HL, Rafat A, Ridden JD, Cruickshank RH, Ridgway HJ, Paterson AM (2014) Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity. Peer J573:1–17

    Google Scholar 

  • Büdel B (1992) Taxonomy of lichenized prokaryotic blue-green algae. In: Reisser W (ed.) Algae and symbioses. Biopress Limited, pp 301–324

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Casano, L. M., del Campo, E. M., García-Breijo, F. J., Reig-Armiñana, J., Gasulla, F., Del Hoyo, A., Alfredo Guéra, Barreno, E. (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition? Environ Microbiol 13: 806–818

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492

    Article  CAS  PubMed  Google Scholar 

  • Crespo A, Kauff F, Divakar PK, del Prado R, Pérez-Ortega S, de Paz GA et al (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59:1735–1753

    Article  Google Scholar 

  • Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I (2014) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60

    Article  PubMed  Google Scholar 

  • De Bary A (1879) Die erscheinung der symbiose: Verlag von Karl J. Trübner

    Google Scholar 

  • DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001. Annu Rev Microbiol 58:273–301

    Article  CAS  PubMed  Google Scholar 

  • DePriest PT, Been MD (1992) Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus. J Mol Biol 2:315–321

    Article  Google Scholar 

  • Doering M, Piercey-Normore MD (2009) Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 4:69–80

    Article  Google Scholar 

  • Duggan PS, Thiel T, Adams DG (2013) Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 59:111–120

    Article  CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Elenkin A (1902) K-Voprosu o” vnutrennem-saprofitizme” [“ éndosaprofitizme”] u lišajnikov

    Google Scholar 

  • Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi-and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Ertz D, Tehler A (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Divers 49:47–71

    Article  Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230

    Article  Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Article  Google Scholar 

  • Friedl T, Büdel B (2008) Photobionts. Lichen Biol 2:9–26

    Article  Google Scholar 

  • Friedl T, Rokitta C (1997) Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23:125–148

    CAS  Google Scholar 

  • Friedl HP, Till GO, Ryan US, Ward PA (1989) Mediator-induced activation of xanthine oxidase in endothelial cells. FASEB J 13:2512–2518

    Article  Google Scholar 

  • Galloway D (1992) Biodiversity: a lichenological perspective. Biodivers Conserv 1:312–323

    Article  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Benavent I, Pérez-Ortega S, de los Ríos A (2017) From Alaska to Antarctica: Species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellata. Mol Phylogenet Evol 107:117–131

    Article  PubMed  Google Scholar 

  • Grande D et al (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172

    Article  Google Scholar 

  • Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Contributions to Botany (USA) 40:360

    Google Scholar 

  • Hawksworth D (1988a) Coevolution of fungi with algae and cyanobacteria in lichen symbioses. Coevolution of Fungi with Plants and Animals (edited by KA Pirozynski and DL Hawksworth). Mycologia 81:490–494

    Google Scholar 

  • Hawksworth D (1988b) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Article  Google Scholar 

  • Henskens FL, Green TA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DJ (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot Rev 75:326–338

    Article  Google Scholar 

  • Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Biol 42:553–578

    Article  CAS  Google Scholar 

  • Honegger R (2001) The symbiotic phenotype of lichen-forming ascomycete Fungal associations. Springer, Berlin, pp 165–188

    Google Scholar 

  • Honegger R (2009) Lichen-forming fungi and their photobionts. In: Plant relationships. Springer, Berlin/Heidelberg, pp 307–333

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  Google Scholar 

  • Jørgensen PM (1996) On the nomenclature of lichen phototypes. Taxon 45:663–664

    Article  Google Scholar 

  • Kirk P, Cannon P, Minter D, Stalpers J (2008) Dictionary of the Fungi, 10th edn. CABI, Wallingford

    Google Scholar 

  • Kosugi M, Shizuma R, Moriyama Y, Koike H, Fukunaga Y, Takeuchi A et al (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166:337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660

    Article  CAS  Google Scholar 

  • Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch T (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797

    Article  PubMed  Google Scholar 

  • Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196

    Article  Google Scholar 

  • Lewis LA, Wilcox LW, Fuerst PA, Floyd GL (1992) Concordance of molecular and ultrastructural data in the study of zoosporic chlorococcalean green algae. J Phycol 28:375–380

    Article  CAS  Google Scholar 

  • Lücking R (1998) ‘Plasticolous’ lichens in a tropical rain forest at La Selva Biological Station, Costa Pica. Lichenologist 30:287–290

    Article  Google Scholar 

  • Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJ, Bungartz F (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Lumbsch H, Huhndorf S (2010) Myconet Volume 14. Part one. Outline of Ascomycota 2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life and Earth Sciences 1: 1–64

    Article  Google Scholar 

  • Lutzoni F, Vilgalys R (1995) Omphalina (Basidiomycota, Agaricales) as a model system for the study of coevolution in lichens. Cryptogam Bot 5:71–81

    Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Melkonian M, Peveling E (1988) Zoospore ultrastructure in species of Trebouxia and Pseudotrebouxia (Chlorophyta). Plant Syst Evol 158:183–210

    Article  Google Scholar 

  • Miadlikowska J, Kauff F, Högnabba F, Oliver J, Molnár K, Fraker E et al (2014) Multigene phylogenetic synthesis for 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families of the class Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 79:132–168

    Article  PubMed  Google Scholar 

  • Moore D, Robson GD, Trinci AP (2011) 21st century guidebook to fungi with CD. Cambridge University Press, New York, pp 1–15

    Book  Google Scholar 

  • Moya P, Škaloud P, Chiva S, García-Breijo FJ, Reig-Arminana J, Vančurová L, Barreno E (2015) Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int J Syst Evol Microbiol 65:1838–1854

    Article  CAS  PubMed  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycol Prog 7:147–160

    Article  Google Scholar 

  • Muggia L, Nelson P, Wheeler T, Yakovchenko LS, Tønsberg T, Spribille T (2011) Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am J Bot 98:647–1656

    Article  Google Scholar 

  • Myllys L, Stenroos S, Thell A, Kuusinen M (2007) High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol 173:621–629

    Article  CAS  PubMed  Google Scholar 

  • Nash III, T. H. (2008). Lichen sensitivity to air pollution. Lichen Biology 2, Cambridge University Press, New York, pp. 9–26

    Google Scholar 

  • Nayaka S (2014) Methods and techniques in collection, preservation and identification of lichens. Plant Taxonomy and Biosystematics-Classical and Modern Methods. New India Publishing Agency, New Delhi, pp 101–128

    Google Scholar 

  • Nelsen MP, Gargas A (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol 177:264–275

    CAS  PubMed  Google Scholar 

  • Nelsen MP, Gargas A (2009) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112:404–417

    Article  Google Scholar 

  • Nelsen MP, Plata ER, Andrew CJ, Lücking R, Lumbsch HT (2011) Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J Phycol 47:282–290

    Article  PubMed  Google Scholar 

  • Nienburg W (1917) Über die Beziehungen zwischen den Algen und Hyphen im Flechtenthallus

    Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  PubMed Central  Google Scholar 

  • Nyati S, Beck A, Honegger R (2007) Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, lichen-forming ascomycetes). Plant Biol 9:390–399

    Article  CAS  PubMed  Google Scholar 

  • Nyati S, Scherrer S, Werth S, Honegger R (2014) Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes). Lichenologist 46:189–212

    Article  Google Scholar 

  • O’Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378

    Article  Google Scholar 

  • Oksanen I, Lohtander K, Paulsrud P, Rikkinen J (2002) A molecular approach to cyanobacterial diversity in a rock-pool community involving gelatinous lichens and free-living Nostoc colonies. Paper presented at the Annales Botanici Fennici 39:93–99

    Google Scholar 

  • Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG (2015) Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol 62:196–205

    Article  CAS  PubMed  Google Scholar 

  • Paul F, Otte J, Schmitt I, Dal Grande F (2018) Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci Rep 8:8624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peksa O, Skaloud P (2008) Changes in chloroplast structure in lichenized algae. Symbiosis(Rehovot) 46:153–160

    Google Scholar 

  • Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948

    Article  PubMed  Google Scholar 

  • Piercey-Normore MD (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344

    Article  CAS  PubMed  Google Scholar 

  • Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Plata ER, Lücking R, Lumbsch HT (2012) A new classification for the family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Fungal Divers 52:107–121

    Article  Google Scholar 

  • Printzen C (2010) Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships Progress in Botany, Springer 71, pp 233–275

    Google Scholar 

  • Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Springer, Dordrecht

    Book  Google Scholar 

  • Reinke J (1872) Ueber die anatomischen Verhältnisse einiger Arten von Gunnera L. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen 1872: 100–108

    Google Scholar 

  • Řídká T, Peksa O, Rai H, Upreti DK, Škaloud P (2014) Photobiont diversity in Indian Cladonia lichens, with special emphasis on the geographical patterns. In: Terricolous lichens in India, Springer pp., pp 53–71

    Chapter  Google Scholar 

  • Rikkinen J (2007) Relations between cyanobacterial symbionts in lichens and plants. Prokaryotic symbionts in plants, Springer, pp 265–270

    Google Scholar 

  • Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32

    Article  Google Scholar 

  • Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357–357

    Article  CAS  PubMed  Google Scholar 

  • Sadowska-Deś AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur J-S et al (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol 76:202–210

    Article  PubMed  Google Scholar 

  • Sánchez FJ, Meeßen J, del Carmen Ruiz M, Leopoldo G, Ott S, Vílchez C et al (2014) UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances. Int J Astrobiol 13:1–18

    Article  CAS  Google Scholar 

  • Sanders WB, Pérez-Ortega S, Nelsen MP, Lücking R, de los Ríos A (2016) Heveochlorella (Trebouxiophyceae): a little-known genus of unicellular green algae outside the Trebouxiales emerges unexpectedly as a major clade of lichen photobionts in foliicolous communities. J Phycol 52:840–853

    Article  CAS  PubMed  Google Scholar 

  • Sassaki GL, Gorin PA, Reis RA, Serrato RV, Elífio SL, Iacomini M (2005) Carbohydrate, glycolipid, and lipid components from the photobiont (Scytonema sp.) of the lichen, Dictyomema glabratum. Carbohydr Res 340:1808–1817

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V et al (2009a) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Wang Z, Townsend J, Spatafora J (2009b) Geoglossomycetes cl. Nov., Geoglossales Ord. Nov. and taxa above class rank in the Ascomycota tree of life. Persoonia 22:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwendener S (1867) Über die wahre Natur der Flechtengonidien. Verh schweiz naturforsch Ges, pp 9–11

    Google Scholar 

  • Singh RS, Walia AK (2014) Characteristics of lichen lectins and their role in symbiosis. Symbiosis 62:123–134

    Article  CAS  Google Scholar 

  • Singh G, Dal Grande F, Divakar PK, Otte J, Crespo A, Schmitt I (2017) Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol 214:317–329

    Article  PubMed  Google Scholar 

  • Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36–46

    Article  PubMed  Google Scholar 

  • Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M et al (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC et al (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenroos S, Hyvönen J, Myllys L, Thell A, Ahti T (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18:237–278

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 3:21–32

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, pp 3–34

    Google Scholar 

  • Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H et al (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415

    Article  Google Scholar 

  • Tretiach M, Brown D (1995) Morphological and physiological differences between epilithic and epiphytic populations of the lichen Parmelia pastillifera. Ann Bot 75:627–632

    Article  Google Scholar 

  • Tschermak-Woess E (1988) New and known taxa of Chlorella (Chlorophyceae): Occurrence as lichen phycobionts and observations on living dictyosomes. Plant Syst Evol 159:123–139

    Article  Google Scholar 

  • Tunjić M, Korač P (2013) Vertical and horizontal gene transfer in lichens. Periodicum Biologiorum 115:321–329

    Google Scholar 

  • Vančurová L, Muggia L, Peksa O, Řídká T, Škaloud P (2018) The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Mol Ecol 27:3016–3033

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322

    Google Scholar 

  • Williams L, Colesie C, Ullmann A, Westberg M, Wedin M, Büdel B (2017) Lichen acclimation to changing environments: Photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecol Evol 7:2560–2574

    Article  PubMed  PubMed Central  Google Scholar 

  • Will-Wolf S, Esseen P-A, Neitlich P (2002) Monitoring biodiversity and ecosystem function: forests Monitoring with lichens—Monitoring lichens. Springer, Dordrecht, pp 203–222

    Book  Google Scholar 

  • Wornik S, Grube M (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microb Ecol 59:150–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Vice Chancellor, Central University of Punjab, for his administrative help while giving a shape to this review. KCS gratefully acknowledges CSIR, New Delhi, India, for the financial support in the form of JRF. We would like to thank Sanjeeva Nayaka, Lichenology Laboratory CSIR-National Botanical Research Institute, Lucknow, for his valuable suggestions. The study was supported by a grant-in-aid from CSIR (No. 60(0114)/17/EMR-II) sanctioned to FB.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, K.C., Nayaka, S., Bast, F. (2019). Diversity of Lichen Photobionts: Their Coevolution and Bioprospecting Potential. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_13

Download citation

Publish with us

Policies and ethics