Skip to main content

Oxidative Stress and Pulmonary Carcinogenesis Through Mechanisms of Reactive Oxygen Species. How Respirable Particulate Matter, Fibrous Dusts, and Ozone Cause Pulmonary Inflammation and Initiate Lung Carcinogenesis

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases

Abstract

The majority of new cases of cancer worldwide in 2012 were lung cancers (1.8 million). Epidemiologic studies established that the most important risk factor for lung cancer is tobacco smoking (active and passive). Other factors which contribute substantially are occupational exposures to carcinogenic chemicals; vehicular air pollution in urban and industrial areas; environmental exposure to inorganic dusts and asbestos fibers; certain carcinogenic metals Cd, As, and Cr; and indoor air pollution. Lungs are exposed to air oxidants generated either endogenously or exogenously, but aerobic organisms are protected against oxidative damage by enzymatic and low molecular weight nonenzymatic antioxidants. Lung cancer mechanisms are promoted through the generation of reactive oxygen and nitrogen species (ROS/RNS) as a result of oxidative stress and exposure to external air pollutants, leading to oxidative stress and inflammation. Their role in the initiation and progression of cellular and mitochondrial DNA damage (cDNA and mtDNA), membrane lipid peroxidation, and oxidative damage to proteins and enzymes is crucial. Also, airborne particulate matter (PM10 and PM2.5) are microparticles or nanoparticles which can penetrate the respiratory system, entering deep into the lung alveoli and trapped in the interior. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc.) play an important role in oxidative stress. Chronic exposures to these air pollutants initiate the synthesis of mediators of pulmonary inflammation in lung epithelial cells and promote the initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel exhausts, tobacco smoke, and PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion have been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression, and activation of transcription factors with important role in carcinogenesis. This review presents the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and the promotion of mechanisms of carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aam BB, Fonnum F (2007) Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. Arch Toxicol 81:441–446

    Article  CAS  PubMed  Google Scholar 

  • Albrecht C, Knaapen AM, Becker A, Hohr D, Haberzettl P et al (2005) The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respirator Res 26:129

    Article  CAS  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyatha V (2008a) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):1–15

    CAS  PubMed  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyathan V (2008b) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11:1–15

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:217–225

    Article  Google Scholar 

  • Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: Regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33:755–764

    Article  CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Davies KJA (2017) Oxidative DNA damage and repair: an introduction. Review. Free Radic Biol Med 107:2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadet J, Davies KJA, Medeiros MHG, Di Mascio P, Wagner JR (2017) Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 107:13–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C, Lai T, Li M, Zhou H, Lv D, Deng Z, Ying S et al (2016) Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis. Oncotarget 7(14):18919–18926

    PubMed  PubMed Central  Google Scholar 

  • Chen Z, Wang D, Liu X, Pei W, Li J, Cao Y et al (2015) Oxidative DNA damage is involved in cigarette smoke-induced lung injury in rats. Environ Health Prev Med 20:469

    Article  CAS  Google Scholar 

  • Chen R, Hu B, Liu Y, Yang G, Xu D, Chen C (2016) Beyond PM2.5. The role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta-Gen Subj 1860(12):2844–2855

    Article  CAS  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Review. Nat Rev Clin Oncol 12:584–596

    Article  CAS  PubMed  Google Scholar 

  • Danielsen PH, Mollert P, Jensen KA, Sharma AK, Wallin H et al (2011) Oxidative stress, DNA damage, and inflammation by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem Res Toxicol 24(2):168–184

    Article  CAS  PubMed  Google Scholar 

  • De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nature Rev Cancer 17:457–474

    Article  CAS  Google Scholar 

  • Dellinger B, Pryor WA, Cueto R, Squadrito GL, Hedge V, Deutsch WA (2001) Role of free radicals in the toxicity of airborne particulate matter. Chem Res Toxicol 14(1):1371–1137

    Article  CAS  PubMed  Google Scholar 

  • Deweirdt J, Qwuignard JF, Crobeddu B, Baeza-Squiban A, Sciare J et al (2017) Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells. Toxicol in Vitro 45(3):340–350

    Article  CAS  PubMed  Google Scholar 

  • Di Terzano C, Stefano F, Conti V; Graziani E, Petroianni A (2010) Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 14(10):809–821

    CAS  PubMed  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98(5):2170–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dizdaroglu M (2012) Oxidatively induced DNA damage: mechanisms, repair and disease. Cancer Lett 327(1–2):26–47

    Article  CAS  PubMed  Google Scholar 

  • Doll R, Hill AB (1950) Smoking and carcinoma of the lung: preliminary report. Br Med J 2(4682):739–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll R, Peto R, Boreham J, Sutherland I (2004) Mortality in relation to smoking: 50 years’ observations on male British doctors. Br Med J 328(7455):1519–1520

    Article  Google Scholar 

  • Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhal Toxicol 14(1):5–27

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Corbeire C, Preterre D, Martin PJ et al (2018) Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats. Environ Pollut 235:514–524

    Article  CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Fernandes JV, Cobucci RNO, Jatoba CAN et al (2015) The role of the mediators of inflammation in cancer development. Pathol Oncol Res 21(3):527–534

    Article  CAS  PubMed  Google Scholar 

  • Field RW, Withers BL (2012) Occupational and environmental causes of lung cancer. Clin Chest Med 33(4):681–703

    Article  PubMed  Google Scholar 

  • Galadan S, Rahman A, Pallichankandy S, Thayyullathil P (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Review. Free Radic Biol Med 104:144–164

    Article  CAS  Google Scholar 

  • Gardi C, Valacchi G (2012) Cigarette smoke and ozone effect on murine inflammatory responses. Ann N Y Acad Sci 1259:104–111

    Article  CAS  PubMed  Google Scholar 

  • Ghio AJ, Carraway MS, Madden MC (2012) Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev 15(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Gomes M, Teixeira AL, Coelho A, Araujo A, Medeiros R (2016) Inflammation and Lung cancer. Oxidative stress, ROS and DNA damage. In: Ahmad SI (ed) Reactive oxygen species in biology and human health. Chapter 16. CRC Press, Boca Raton, pp 215–223

    Google Scholar 

  • Grevendonk L, Janssen BG, Vanpoucke C, Lefebvre W, Hoxha M et al (2016) Mitochondrial oxidative DNA damage and exposure to particulate air pollution in mother-newborn pairs. Environ Health 15:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez-Flecha B (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) The antioxidants of extracellular fluids. Arch Biochem Biophys 280:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O et al (2014) Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect 122(9):906–911

    Article  PubMed  PubMed Central  Google Scholar 

  • He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553

    Article  PubMed  Google Scholar 

  • Hou L, Zhu Z-Z, Zhang X, Nordio F, Bonzini M, Schwartz J et al (2010) Airborne particulate matter and mitochondrial damage: a cross-sectional study. Environ Health 9:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang H-B, Chang Y-C, Su T-Y, Wang Y-C, Wang G-C, Chen J-E, Tang C-S, Wu T-N, Liou S-H (2017) Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: a longitudinal study. Sci Total Environ 598:289–296

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Sato EF, Nishikawa M, Park A-M et al (2003) Mitochondriaql generation of rective oxygen species and its role in aerobic life. Curr Med Chem 10(23):2495–2505

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (WHO) (2012) GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Lung Cancer: Fact Sheets, IARC. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=lung

  • Islami F, Torre LA, Jemal A (2015) Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res 4(4):327–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517

    Article  CAS  PubMed  Google Scholar 

  • Jiang YY, Kong DX, Qin T, Zhang HY (2010) How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands. Biochem Biophys Res Commun 391(2):1158–1160

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Kawai K (2016) 8-Hydroxyguanine, an oxidative DNA and RNA modification. Modified Nucl Acids Biol Med:147–185

    Google Scholar 

  • King PT (2015) Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 4:26

    Article  PubMed Central  Google Scholar 

  • Knaapen AM, Shi T, Borm PJ, Schins RP (2002) Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol Cell Biochem 234–235:317–326

    Article  PubMed  Google Scholar 

  • Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659(1–2):15–30

    Article  CAS  PubMed  Google Scholar 

  • Lai C-H, Huang H-B, Chang Y-C, Su T-Y, Wang Y-C et al (2017) Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: a longitudinal study. Sci Total Environ 598:289–296

    Article  CAS  PubMed  Google Scholar 

  • Lakey PSJ, Berkemeier T, Tong H, Arangio AM, Lucas K et al (2016) Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep 6: 32926, on line 8.9.2016

    Google Scholar 

  • Landskron G, De la Fuente, Thuwajit P, Thuwajit C, Hermoso MA (2014). Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res ID:149185:1–19

    Article  CAS  Google Scholar 

  • Lazennes G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16(3):133–144

    Article  CAS  Google Scholar 

  • Lee I-T, Yang C-M (2013) Inflammatory signalings involved in airway and pulmonary diseases. Review. Mediators Inflam 2013 (art. ID 791231)

    Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Kou X, Xie L, Cheng F, Geng H (2015) Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ Sci Pollut Res 22(24):20167–20176

    Article  CAS  Google Scholar 

  • Limbach L, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Review. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Lippmann M, Yeates DB, Albert RE (1980) Depostion, retention and clearance of inhaled particles. Occup Environ Med 37(4):337–362

    Article  CAS  Google Scholar 

  • Loomis D, Grosse Y, Lauby-Secretan B et al (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol:13, 1262–1263

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Review. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  • Mirowsky JE, Daiuley LA, Devlin RB (2016) Differential expression of pro-inflammatory and oxidative stress mediators induced by nitrogen dioxide and ozone in primary human bronchial epithelial cells. Inhal Toxicol 28(8):374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller P, Jacobsen NR, Folkmann JK, Danielsen PH et al (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44(1):1–46

    Article  PubMed  CAS  Google Scholar 

  • Møller P, Danielsen PH, Karottki DG, Jantzen K et al (2014) Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res 762:133–166

    Article  PubMed  CAS  Google Scholar 

  • Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Otsuki T, Yoshioka Y, Holian A (eds) (2016) Biological effects of fibrous and particulate substances. Springer, Tokyo/Heidelberg

    Google Scholar 

  • Ottavio FG, Handy DE, Loscalzo J (2008) Redox regulation in the extracellular environment. Review. Circ J 72:1–16

    Article  Google Scholar 

  • Ovrevik J, Refsnes M, Lag M, Holme JA, Schwarze PE (2015) Activation of proinflammatory responses in cells of the airway mucosa by particulate matter, oxidant and non-oxidant mediated triggering mechanisms. Biomolecules 5:1399–1440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pardo M, Porat Z, Rudich A, Schauer JJ, Rudich Y (2016) Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environ Pollut 210:227–237

    Article  CAS  PubMed  Google Scholar 

  • Pardop M, Porat Z, Rudich A, Schauer JJ, Rudich Y (2016) Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environ Pollut 210:227–237

    Article  CAS  Google Scholar 

  • Park JH, Troxel AB, Harvey RG, Penning TM (2006) Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generates abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 19(5):719–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier G, Ridgen M, Kauri LM, Shutt R, Mahmud M et al (2017) Associations between urinary biomarkers of oxidative stress and air pollutants observed in a randomized crossover exposure to steel mill emissions. Int J Hyg Environ Health 220(2):387–394

    Article  CAS  PubMed  Google Scholar 

  • Penning TM, Burczynski ME, Hung CF, McCoull KD et al (1999) Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: generation of reactive and redox active o-quinones. Chem Res Toxicol 12:1–18

    Article  CAS  PubMed  Google Scholar 

  • Pilger A, Rüdiger HW (2006) 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80:1–15

    Article  CAS  PubMed  Google Scholar 

  • Pisoschi AM, Pop PA (2015) The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 97:55–74

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Aspects Med 31(2):145–170

    Article  CAS  PubMed  Google Scholar 

  • Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter S, Gupta SC, Chaturved MM, Aggrawal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592:119–137

    Article  CAS  PubMed  Google Scholar 

  • Riva DR, Magalhães CB, Lopes AA, Lanças T, Manuad T, Malm O (2011) Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol Intern Forum Respir Res 23(5):257–267

    Article  CAS  Google Scholar 

  • Rivas-Fuentes S, Salgado-Aguayo A, Belloso SP, Rosete PG et al (2015) Role of chemokines in non-small cell lung cancer: angiogenesis and inflammation. J Cancer 6(10):938–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rom WN (2011) Role of oxidants in interstitial lung diseases: pneumoconioses, constrictive bronchiolitis, and chronic tropical pulmonary eosinophilia. Mediators Inflam (ID 407657):1–5

    Article  CAS  Google Scholar 

  • Rosanna DP, Salvatore C (2012) Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 18(26):3889–3900

    Article  PubMed  Google Scholar 

  • Sangani RG, Ghio AJ (2011) Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis 6:191–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santibáñez-Andrade M, Quezada-Maldonado EM, Osornio-Vargas A, Sánchez-Pérez Y (2017) Air pollution and genomic instability: the role of particulate matter in lung carcinogenesis. Environ Pollut 229:412–422

    Article  PubMed  CAS  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Review. Mol Cell 48:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalapour S, Karin M (2015) Immunity, inflammation, and cancer: an eternal fight between good and evil. J Clin Investig 125(9):3347–3355

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi T, Knaapen AM, Begerow J, Birmili W, Borm PJ, Schin RP (2003) Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occup Environ Med 60:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squadrito GL, Cueto R, Dellinger B, Pryor WA (2001) Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med 31:1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Storr SJ, Woolston CM, Zhang Y, Martin SG (2013) Redox environment, free radicals, and oxidative DNA damage. Antioxid Redox Signal 18(18):2399–2408

    Article  CAS  PubMed  Google Scholar 

  • Strak M, Janssen NA, Godri KJ, Gosens I, Mudway IS et al (2012) Respiratory health effects of airborne particulate matter: the role of particle size, composition, and oxidative potential-the RAPTES project. Environ Health Perspect 120(8):1183–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunil VR, Kinal J, Vayas KJ, Massa CB, Gow AJ et al (2013) Ozone-induced Injury and oxidative stress in bronchiolar epithelium is associated with altered pulmonary mechanics. Toxicol Sci 33:309–319

    Article  CAS  Google Scholar 

  • Turner MC, Cohen A, Jerrett M, Gapstur SM, Diver R et al (2014a) Interactions between cigarette smoking and fine particulate matter in the risk of lung cancer mortality in cancer prevention study II. Am J Epidemiol 180(12):1145–1149

    Article  PubMed  Google Scholar 

  • Turner MD, Nedjai B, Hurst T, Pennington DJ (2014b) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Review. Biochim Biophys Acta (BBA)- Mol Cell Res 1843(11):2563–2582

    Article  CAS  Google Scholar 

  • Ursini F, Maiorino M, Forman HJ (2016) Redox homeostasis: The Golden Mean of healthy living. Redox Biol 8:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Balomenou H, Macropoulou I, Zarodimos I (1996) A study of the synergistiv interaction of asbestos fibers with cigarette tar extracts for the generation of hydroxyl radicals in aqueous buffer solution. Free Radic Biol Med 20(6):853–858

    Article  CAS  PubMed  Google Scholar 

  • Valavanidis A, Fiotakis K, Bakeas E, Vlahogianni T (2005) Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Redox Rep 10(1):37–51

    Article  CAS  PubMed  Google Scholar 

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Review. J Environ Sci Health, Part C, Environ Carcinog Ecotoxicol Rev 26(4):339–362

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009a) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health, Part C Environ Carcinog Ecotoxicol Rev 27(2):120–139

    Article  CAS  Google Scholar 

  • Valavanidis A, Loridas S, Vlahogianni T, Fiotakis K (2009b) Influence of ozone on traffic-related particulate matter on the generation of hydroxyl radicals through a heterogeneous synergistic effect. J Hazard Mater 162(2–3):886–892

    Article  CAS  PubMed  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis K (2009c) Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6(2):445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009d) 8-Hydroxy-2’-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 27:1–20

    Article  CAS  Google Scholar 

  • Valavanidis A, Fiotakis K, Vlachogianni T (2010) The role of stable free radicals, metals and PAHs of airborne particulate matter in mechanisms of oxidative stress and carcinogenesis. In: Zereini F, Wiseman CLS (eds) Urban airborne particulate matter. Springer, Berlin/Heidelberg, pp 411–429

    Chapter  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10(9):3086–3907

    Article  CAS  Google Scholar 

  • Valko M, Izakovic M, Maur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Tesler J (2007) Free radicals and antioxidants in normal physiological function and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Van Eeden SF, Sin DD (2013) Oxidative stress in chronic obstructive pulmonary disease: A lung and systemic process. Can Respir J 20(1):27–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlachogianni T, Fiotakis K, Loridas S, Perdicaris S, Valavanidis A (2013) Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer. Lung Cancer (Auckl) 4:71–82

    Google Scholar 

  • Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, Sharma S, Dubinett SM (2008) Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc 5(8):811–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiegman CH, Li F, Clarke CJ, Jazrawi E, Kirkham P et al (2014) A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin Sci 126(6):425–440

    Article  CAS  Google Scholar 

  • Wong J, Magun B, Wood L (2016) Lung inflammation caused by inhaled toxicants: a review. Int J Chron Obstruct Pulmon Dis 11(1):1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong MCS, Lao XQ, Ho K-F, Goggins WB, Tse SLA (2017) Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep 7(14300). https://doi.org/10.1038/s41598-017-14513-7

  • Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Antony S, Meitzier J, Doroshow JH (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 345(2):164–173

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Jin Y, An Z, Liu Y, Samet JM, Wu W (2016) Inflammatory cell signaling following exposures to particulate matter and ozone. Biochim Biophys Acta (BBA)-Gen Subj 1860(12):2826–2834

    Article  CAS  Google Scholar 

  • Yang L, Liu G, Lin Z, Wang Y, He H, Liu T, Kamp DW (2016) Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environ Toxicol 31(8):923–936

    Article  CAS  PubMed  Google Scholar 

  • Yoker RA, McPhail RC (2011) Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol 6:7. https://doi.org/10.1186/1745-6673-6-7

    Article  CAS  Google Scholar 

  • Yu Y, Cui Y, Niedernhofer LJ, Wang Y (2016) Occurrence, biological consequences, and human health relevance of oxidative stress-Induced DNA damage. Chem Res Toxicol 29(12):2008–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuwadee N, Tangamornsuksan W, Lohitnavy O, Chaiyakunapruk N, Scholfield N et al (2015) Additive synergism between asbestos and smoking in lung cancer risk: a systematic review and meta-analysis. PLoS One 10(8):e135798

    Google Scholar 

  • Zanolin ME, Girardi P, Deganb P (2018) Measurement of a urinary marker (8-hydroxydeoxyGuanosine, 8-OHdG) of DNA oxidative stress in epidemiological surveys: a pilot study. Int J Biol Markers 30(3):341–345

    Article  CAS  Google Scholar 

  • Zhang Y, Yang Z, Feng Y, Li R, Zhang Q, Geng H, Dong C (2015) Effects of coarse chalk dust particles (2.5–10 μm) on respiratory burst and oxidative stress in alveolar macrophages. Environ Sci Pollut Res 22(16):12450–12457

    Article  CAS  Google Scholar 

  • Zhou YM, Zhong CY, Kennedy IM, Leppert VJ, Pinkerton KE (2003) Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 190(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711(1–2):167–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Valavanidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valavanidis, A. (2019). Oxidative Stress and Pulmonary Carcinogenesis Through Mechanisms of Reactive Oxygen Species. How Respirable Particulate Matter, Fibrous Dusts, and Ozone Cause Pulmonary Inflammation and Initiate Lung Carcinogenesis. In: Chakraborti, S., Chakraborti, T., Das, S., Chattopadhyay, D. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8413-4_13

Download citation

Publish with us

Policies and ethics