Skip to main content

Mitochondrial Metabolism in Cancer. A Tangled Topic. Which Role for Proteomics?

  • Chapter
  • First Online:
Mitochondria in Health and in Sickness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1158))

Abstract

Given the role of mitochondria in modulating many cellular functions, it is not surprising that they can play a crucial role also in molecular pathophysiology of cancer. In particular, the discovery in recent decades of a link between cancer metabolic processes, alterations of mitochondrial DNA, oncogenes and tumor suppressors has led not only to a renaissance of interest in Warburg’s pioneering work, but also to a reexamination of his original observations above all in relation to the current knowledge in cancer cell metabolism. It follows that, although mitochondrial contribution to the pathogenesis of cancer has historically tended to be neglected, it is now evident that reprogrammed mitochondria can contribute to a complex bioenergetic adjustment that sustains not only tumor formation but also its progression. Most importantly, cancer cell metabolism seems to have a role in diversified aspects related to cancer pathophysiology (i.e., aggressiveness, recurrence, metastatic dissemination). Hence, it is imperative to always consider cancer cell metabolism, its adaptability, its influences but, above all, its functional heterogeneity in a single tumor, for a really rational and valid approach towards molecular biology of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mootha VK, Bunkenborg J, Olsen JV et al (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640

    Article  CAS  PubMed  Google Scholar 

  2. Palmfeldt J, Bross P (2017) Proteomics of human mitochondria. Mitochondrion 33:2–14

    Article  CAS  PubMed  Google Scholar 

  3. Cherry C, Thompson B, Saptarshi N, Wu J, Hoh J (2016) 2016: a ‘mitochondria’ odyssey. Trends Mol Med 22:391–403

    Article  CAS  PubMed  Google Scholar 

  4. Lane RK, Hilsabeck T, Rea SL (2015) The role of mitochondrial dysfunction in age-related diseases. Biochim Biophys Acta 1847:1387–1400

    Article  CAS  PubMed  Google Scholar 

  5. Scatena R, Bottoni P, Giardina B (2012) Advances in mitochondrial medicine. Springer, Philadelphia

    Book  Google Scholar 

  6. Singh KK, Costello L (2008) Mitochondria and cancer. Springer, Philadelphia

    Google Scholar 

  7. Sarangarajan R, Apte S (2008) Cellular respiration and carcinogenesis. Humana Press, Totowa, pp 45–54

    Google Scholar 

  8. Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257

    Article  CAS  PubMed  Google Scholar 

  10. Alberio T, Pieroni L, Ronci M et al (2017) Toward the standardization of mitochondrial proteomics: the Italian mitochondrial human proteome project initiative. J Proteome Res 16:4319–4329

    Article  CAS  PubMed  Google Scholar 

  11. MitoEAGLE preprint 2017-09-21 (Version #). The protonmotive force and respiratory control: Building blocks of mitochondrial physiology Part 1. http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2017-09-21

  12. Dell’ Antone P (2012) Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Med Hypotheses 79:388–392

    Article  PubMed  CAS  Google Scholar 

  13. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit Cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tran Q, Lee H, Park J et al (2016) Targeting Cancer metabolism -revisiting the Warburg effects. Toxicol Res 32:177–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  CAS  PubMed  Google Scholar 

  16. Vazquez A, Liu J, Zhou Y, Oltvai ZN (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol 4:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  18. Räsänen K, Herlyn M (2012) Paracrine signaling between carcinoma cells and mesenchymal stem cells generates cancer stem cell niche via epithelial-mesenchymal transition. Cancer Discov 2:775–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bottoni P, Giardina B, Vitali A, Boninsegna A, Scatena R (2009) A proteomic approach to characterizing ciglitazone-induced cancer cell differentiation in Hep-G2 cell line. Biochim Biophys Acta 1794:615–626

    Article  CAS  PubMed  Google Scholar 

  20. Scatena R, Bottoni P, Giardina B (2014) Mitochondria, metabolism and cancer: a growing role in cancer cell differentiation and cancer cell dormancy. Cancer & Metabolism 2:P64

    Article  Google Scholar 

  21. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  23. Gaude E, Frezza C (2014) Defects in mitochondrial metabolism and cancer. Cancer Metab 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Unwin RD, Craven RA, Harnden P et al (2003) Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3:1620–1632

    Article  CAS  PubMed  Google Scholar 

  25. Wallace DC (2005) Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol 70:363–374

    Article  CAS  PubMed  Google Scholar 

  26. Verma M, Kagan J, Sidransky D, Srivastava S (2003) Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 3:789–795

    Article  CAS  PubMed  Google Scholar 

  27. Herrmann PC, Gillespie JW, Charboneau L et al (2003) Mitochondrial proteome: altered cytochrome c oxidase subunit levels in prostate cancer. Proteomics 3:1801–1810

    Article  CAS  PubMed  Google Scholar 

  28. Modica-Napolitano JS, Singh KK (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762

    Article  CAS  PubMed  Google Scholar 

  29. Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 4:143–158

    Article  CAS  PubMed  Google Scholar 

  30. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie H, Simon MC (2017) Oxygen availability and metabolic reprogramming in cancer. J Biol Chem 292:16825–16832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bi X, Lin Q, Foo TW et al (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 5:1119–1113

    Article  CAS  PubMed  Google Scholar 

  33. Mathupala SP, Rempel A, Pedersen PL (1995) Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 270:16918–16925

    Article  CAS  PubMed  Google Scholar 

  34. Scatena R, Bottoni P, Pontoglio A et al (2008) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17:1533–1545

    Article  CAS  PubMed  Google Scholar 

  35. Danial NN, Gramm CF, Scorrano L et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:896–897

    Article  CAS  Google Scholar 

  36. Mathupala SP, Rempel A, Pedersen PL (2001) Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 276:43407–43412

    Article  CAS  PubMed  Google Scholar 

  37. Miller DM, Thomas SD, Islam A et al (2012) C-Myc and cancer metabolism. Clin Cancer Res 18:5546–5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li S, Li J, Dai W et al (2017) Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer 117:1518–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang H, Du X, Sun TT et al (2017) Lectin PCL inhibits the Warburg effect of PC3 cells by combining with EGFR and inhibiting HK2. Oncol Rep 37:1765–1771

    Article  CAS  PubMed  Google Scholar 

  40. Hardt PD, Mazurek S, Toepler M et al (2004) Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Brit J Cancer 91:980–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dombrauckas JD, Santarsiero BD, Mesecar AD (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 44:9417–9429

    Article  CAS  PubMed  Google Scholar 

  42. Liu F, Ma F, al WY (2017) PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 19:1358–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308

    Article  CAS  PubMed  Google Scholar 

  44. Du XL, Hu H, Lin DC et al (2007) Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J Mol Med 85:863–875

    Article  CAS  PubMed  Google Scholar 

  45. Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  CAS  PubMed  Google Scholar 

  46. Vander Heiden MG, Christofk HR, Schuman E et al (2010) Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79:1118–1124

    Article  CAS  PubMed  Google Scholar 

  47. Bluemlein K, Grüning NM, Feichtinger RG et al (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2:393–400

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhou W, Capello M, Fredolini C et al (2012) Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11:554–563

    Article  CAS  PubMed  Google Scholar 

  49. Isgrò MA, Bottoni P, Scatena R (2015) Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol 867:125–143

    Article  PubMed  CAS  Google Scholar 

  50. Deng SS, Xing TY, Zhou HY et al (2006) Comparative proteome analysis of breast cancer and adjacent normal breast tissues in human. Genomics Proteomics Bioinformatics 4:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hilf R, Rector WD, Orlando RA (1976) Multiple molecular forms of lactate dehydrogenase and glucose 6-phosphate dehydrogenase in normal and abnormal human breast tissues. Cancer 37:1825–1830

    Article  CAS  PubMed  Google Scholar 

  52. Shim H, Dolde C, Lewis BC et al (1997) C-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koukourakis MI, Giatromanolaki A, Sivridis E et al (2003) Tumour and angiogenesis research group. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer 89:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  CAS  PubMed  Google Scholar 

  55. Kawamoto M (1994) Breast cancer diagnosis by lactate dehydrogenase isozymes in nipple discharge. Cancer 73:1836–1841

    Article  CAS  PubMed  Google Scholar 

  56. Koukourakis MI, Giatromanolaki A, Simopoulos C et al (2005) Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 22:25–30

    Article  CAS  PubMed  Google Scholar 

  57. Koukourakis MI, Giatromanolaki A, Polychronidis A et al (2006) Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer. Cancer Sci 97:582–588

    Article  CAS  PubMed  Google Scholar 

  58. Leiblich A, Cross SS, Catto JW et al (2006) Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25:2953–2960

    Article  CAS  PubMed  Google Scholar 

  59. Glen A, Gan CS, Hamdy FC et al (2008) iTRAQ facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res 7:897–907

    Article  CAS  PubMed  Google Scholar 

  60. Zhou W, Capello M, Fredolini C (2011) Proteomic analysis of pancreatic ductal adenocarcinoma cells reveals metabolic alterations. J Proteome Res 10:1944–1952

    Article  CAS  PubMed  Google Scholar 

  61. Hussien R, Brooks GA (2011) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 43:255–264

    Article  CAS  PubMed  Google Scholar 

  62. Zha X, Wang F, Wang Y et al (2011) Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res 71:13–18

    Article  CAS  PubMed  Google Scholar 

  63. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  CAS  PubMed  Google Scholar 

  64. Fliedner SM, Kaludercic N, Jiang XS et al (2012) Warburg effect’s manifestation in aggressive pheochromocytomas and paragangliomas: insights from a mouse cell model applied to human tumor tissue. PLoS One 7:e40949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Costa ASH, Frezza C (2017) Metabolic reprogramming and oncogenesis: One Hallmark, Many Organelles. Int Rev Cell Mol Biol 332:213–231

    Article  CAS  PubMed  Google Scholar 

  66. Tyrakis PA, Yurkovich ME, Sciacovelli M et al (2017) Fumarate hydratase loss causes combined respiratory chain defects. Cell Rep 21:1036–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gao W, Xua J, Wang F et al (2015) Mitochondrial proteomics approach reveals voltage-dependent Anion Channel 1 (VDAC1) as a potential biomarker of gastric Cancer. Cell Physiol Biochem 37:2339–2354

    Article  CAS  PubMed  Google Scholar 

  68. Gao W, Xu J, Wang F, Zhang L, Peng R, Shu Y, Wu J, Tang Q, Zhu Y (2015) Plasma membrane proteomic analysis of human gastric Cancer tissues: revealing flotillin 1 as a marker for gastric Cancer. BMC Cancer 15:36

    Article  CAS  Google Scholar 

  69. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells--perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  70. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    Article  CAS  PubMed  Google Scholar 

  71. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  CAS  PubMed  Google Scholar 

  72. Skvortsov S, Debbage P, Skvortsova I (2014) Proteomics of cancer stem cells. Int J Radiat Biol 90:653–658

    Article  CAS  PubMed  Google Scholar 

  73. Van Houdt WJ, Emmink BL, Pham TV et al (2011) Comparative proteomics of colon cancer stem cells and differentiated tumor cells identifies BIRC6 as a potential therapeutic target. Mol Cell Proteomics 10:M111.011353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dormeyer W, van Hoof D, Braam SR et al (2008) Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J Proteome Res 7:2936–2951

    Article  CAS  PubMed  Google Scholar 

  75. Chaerkady R, Kerr CL, Kandasamy K et al (2010) Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics 10:1359–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lamb R, Harrison H, Hulit J et al (2014) Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget 5:11029–11037

    PubMed  PubMed Central  Google Scholar 

  78. Lamb R, Ozsvari B, Bonuccelli G et al (2015) Dissecting tumor metabolic heterogeneity: telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget 6:21892–21905

    PubMed  PubMed Central  Google Scholar 

  79. Sacco F, Silvestri A, Posca D et al (2016) Deep proteomics of breast Cancer cells reveals that metformin rewires signaling networks away from a pro-growth state. Cell Syst 2:159–171

    Article  CAS  PubMed  Google Scholar 

  80. Prost S, Relouzat F, Spentchian M et al (2015) Erosion of the chronic myeloid leukaemia stem cell pool by PPARγ agonists. Nature 525:380–383

    Article  CAS  PubMed  Google Scholar 

  81. Kuntz EM, Baquero P, Michie AM et al (2017) Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23:1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Choong LY, Lim S, Chong PK (2010) Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One 5:e11030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Chen YW, Chou HC, Lyu PC et al (2011) Mitochondrial proteomics analysis of tumorigenic and metastatic breast cancer markers. Funct Integr Genomics 11:225–239

    Article  CAS  PubMed  Google Scholar 

  84. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  CAS  PubMed  Google Scholar 

  85. Skvortsov S, Schäfer G, Stasyk T et al (2011) Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin a as a discriminatory biomarker. J Proteome Res 10:259–268

    Article  CAS  PubMed  Google Scholar 

  86. Pernemalm M, De Petris L, Branca RM et al (2013) Quantitative proteomics profiling of primary lung adenocarcinoma tumors reveals functional perturbations in tumor metabolism. J Proteome Res 12:3934–3943

    Article  CAS  PubMed  Google Scholar 

  87. Wang J, Gutierrez P, Edwards N, Fenselau C (2007) Integration of 18O labeling and solution isoelectric focusing in a shotgun analysis of mitochondrial proteins. J Proteome Res 6:4601–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stigliano A, Cerquetti L, Borro M et al (2008) Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane. Endocr Relat Cancer 15:1–10

    Article  CAS  PubMed  Google Scholar 

  89. Jiang YJ, Sun Q, Fang XS, Wang X (2009) Comparative mitochondrial proteomic analysis of Rji cells exposed to adriamycin. Mol Med 15:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen M, Huang H, He H et al (2015) Quantitative proteomic analysis of mitochondria from human ovarian cancer cells and their paclitaxel-resistant sublines. Cancer Sci 106:1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dai Z, Yin J, He H et al (2010) Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 10:3789–3799

    Article  CAS  PubMed  Google Scholar 

  92. Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094

    Article  CAS  PubMed  Google Scholar 

  93. Jupe ER, Liu XT, Kiehlbauch JL (1996) Prohibitin in breast cancer cell lines: loss of antiproliferative activity is linked to 3′ untranslated region mutations. Cell Growth Differ 7:871–878

    CAS  PubMed  Google Scholar 

  94. Ummanni R, Junker H, Zimmermann U et al (2008) Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett 266:171–185

    Article  CAS  PubMed  Google Scholar 

  95. Ross JA, Robles-Escajeda E, Oaxaca DM et al (2017) The prohibitin protein complex promotes mitochondrial stabilization and cell survival in hematologic malignancies. Oncotarget 8:65445–65456

    PubMed  PubMed Central  Google Scholar 

  96. Fusaro G, Dasgupta P, Rastogi S et al (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853–47861

    Article  CAS  PubMed  Google Scholar 

  97. Gregory-Bass RC, Olatinwo M, Xu W et al (2008) Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer 122:1923–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel N, Chatterjee SK, Vrbanac V et al (2010) Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci U S A 107:2503–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kimura K, Wada A, Ueta M et al (2010) Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis. Int J Oncol 37:1271–1278

    CAS  PubMed  Google Scholar 

  100. Wu TF, Wu H, Wang YW et al (2007) Prohibitin in the pathogenesis of transitional cell bladder cancer. Anticancer Res 27:895–900

    CAS  PubMed  Google Scholar 

  101. Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793:27–32

    Article  CAS  PubMed  Google Scholar 

  102. Sripathi SR, He W, Atkinson CL et al (2011) Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry 50:8342–8351

    Article  CAS  PubMed  Google Scholar 

  103. Jiang L, Dong P, Zhang Z et al (2015) Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells. Cell Death Dis 6:e1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by COST Action CA15203 MitoEAGLE and LINEA D.3.2 COFIN.GRASSI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Scatena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bottoni, P., Scatena, R. (2019). Mitochondrial Metabolism in Cancer. A Tangled Topic. Which Role for Proteomics?. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_1

Download citation

Publish with us

Policies and ethics