Skip to main content

Liver Cirrhosis with Steatohepatitis: Nonalcoholic Steatohepatitis and Alcoholic Steatohepatitis

  • Chapter
  • First Online:
The Evolving Landscape of Liver Cirrhosis Management
  • 570 Accesses

Abstract

Nonalcoholic steatohepatitis is a phenotype of metabolic diseases in the liver, associated with eating disorders and lack of exercise. In contrast, alcoholic steatohepatitis develops due to alcohol abuse. Although the causes are different, each type of steatohepatitis exhibits the same histological features, such as steatosis, lobular and portal inflammation, hepatocellular ballooning, and perisinusoidal and pericellular fibrosis. Untreated nonalcoholic and alcoholic steatohepatitis can progress to cirrhosis, and advanced fibrosis is a predictor of poor prognosis. Therefore, it is important to elucidate the pathophysiology and make appropriate diagnoses and initiate treatment. Various factors are involved in each pathological conditions. To diagnose these diseases, a more user-friendly diagnostic assessment is needed. Currently, predictive models combined with several indicators and imaging assessments are used. Further, several treatments are attempted for patients in clinical practice and clinical trials, however the efficacy is not sufficient. In this chapter, we reviewed the epidemiology, pathophysiology, diagnosis, and treatment of cirrhosis due to both nonalcoholic and alcoholic steatohepatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludwig J, Viggiano TR, McGill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55:434–8.

    CAS  PubMed  Google Scholar 

  2. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  CAS  PubMed  Google Scholar 

  3. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  4. Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol. 2016;65:589–600.

    Article  PubMed  Google Scholar 

  5. Mokdad AA, Lopez AD, Shahraz S, Lozano R, Mokdad AH, Stanaway J, et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med. 2014;12:145.

    Article  PubMed  PubMed Central  Google Scholar 

  6. European Association for the Study of the Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol. 2012;57:399–420.

    Article  Google Scholar 

  7. O’Shea RS, Dasarathy S, McCullough AJ. Practice guideline committee of the American Association for the Study of Liver Diseases; practice parameters committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology. 2010;51:307–28.

    Article  PubMed  Google Scholar 

  8. Mendenhall CL, Anderson S, Weesner RE, Goldberg SJ, Crolic KA. Protein-calorie malnutrition associated with alcoholic hepatitis. Veterans Administration Cooperative Study Group on Alcoholic Hepatitis. Am J Med. 1984;76:211–22.

    Article  CAS  PubMed  Google Scholar 

  9. Horie Y, Yamagishi Y, Ebinuma H, Hibi T. Obesity, type 2 diabetes, age and female gender: significant risk factors in the development of alcoholic liver cirrhosis. Hepatol Int. 2013;7:280–5.

    Article  PubMed  Google Scholar 

  10. Lieber CS, Jones DP, Decarli LM. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J Clin Invest. 1965;44:1009–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mandayam S, Jamal MM, Morgan TR. Epidemiology of alcoholic liver disease. Semin Liver Dis. 2004;24:217–32.

    Article  PubMed  Google Scholar 

  12. Bellentani S, Saccoccio G, Costa G, Tiribelli C, Manenti F, Sodde M, et al. Drinking habits as cofactors of risk for alcohol induced liver damage. The Dionysos Study Group. Gut. 1997;41:845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lelbach WK. Cirrhosis in the alcoholic and its relation to the volume of alcohol abuse. Ann N Y Acad Sci. 1975;252:85–105.

    Article  CAS  PubMed  Google Scholar 

  14. Savolainen VT, Liesto K, Mannikko A, Penttila A, Karhunen PJ. Alcohol consumption and alcoholic liver disease: evidence of a threshold level of effects of ethanol. Alcohol Clin Exp Res. 1993;17:1112–7.

    Article  CAS  PubMed  Google Scholar 

  15. Horie Y, Ebinuma H, Kikuchi M, Kanai T. Current status of alcoholic liver disease in Japan and therapeutic strategy. Nihon Arukoru Yakubutsu Igakkai Zasshi. 2016;51:71.

    PubMed  Google Scholar 

  16. Day CP. Who gets alcoholic liver disease: nature or nurture? J R Coll Physicians. 2000;34:557–62.

    CAS  Google Scholar 

  17. Corrao G, Ferrari P, Zambon A, Torchio P. Are the recent trends in liver cirrhosis mortality affected by the changes in alcohol consumption? Analysis of latency period in European countries. J Stud Alcohol. 1997;58:486–94.

    Article  CAS  PubMed  Google Scholar 

  18. Toshikuni N, Izumi A, Nishino K, Inada N, Sakanoue R, Yamato R, et al. Comparison of outcomes between patients with alcoholic cirrhosis and those with hepatitis C virus-related cirrhosis. J Gastroenterol Hepatol. 2009;24:1276–83.

    Article  PubMed  Google Scholar 

  19. Marot A, Henrion J, Knebel JF, Moreno C, Deltenre P. Alcoholic liver disease confers a worse prognosis than HCV infection and non-alcoholic fatty liver disease among patients with cirrhosis: an observational study. PLoS One. 2017;12:e0186715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mancebo A, González-Diéguez ML, Cadahía V, Varela M, Pérez R, Navascués CA, et al. Annual incidence of hepatocellular carcinoma among patients with alcoholic cirrhosis and identification of risk groups. Clin Gastroenterol Hepatol. 2013;11:95–101.

    Article  PubMed  Google Scholar 

  21. MacSween RN, Burt AD. Histologic spectrum of alcoholic liver disease. Semin Liver Dis. 1986;6:221–32.

    Article  CAS  PubMed  Google Scholar 

  22. Yokoyama A, Mizukami T, Matsui T, Yokoyama T, Kimura M, Matsushita S, et al. Genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 and liver cirrhosis, chronic calcific pancreatitis, diabetes mellitus, and hypertension among Japanese alcoholic men. Alcohol Clin Exp Res. 2013;37:1391–401.

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi S, Matsushita S, Muramatsu T, Murayama M, Hayashida M. Alcohol and aldehyde dehydrogenase genotypes and drinking behavior in Japanese. Alcohol Clin Exp Res. 1996;20:493–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yokoyama A, Taniki N, Hara S, Haysashi E, Nakamoto N, Mizukami T, et al. Slow-metabolizing ADH1B and inactive heterozygous ALDH2 increase vulnerability to fatty liver in Japanese men with alcohol dependence. J Gastroenterol. 2018;53:660–9.

    Article  CAS  PubMed  Google Scholar 

  25. Sato N, Lindros KO, Baraona E, Ikejima K, Mezey E, Jarvelainen HA, et al. Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res. 2001;25:40S–5S.

    Article  CAS  PubMed  Google Scholar 

  26. Stewart SH. Racial and ethnic differences in alcohol-associated aspartate aminotransferase and gamma-glutamyltransferase elevation. Arch Intern Med. 2002;162:2236–9.

    Article  CAS  PubMed  Google Scholar 

  27. Stinson FS, Grant BF, Dufour MC. The critical dimension of ethnicity in liver cirrhosis mortality statistics. Alcohol Clin Exp Res. 2001;25:1181–7.

    Article  CAS  PubMed  Google Scholar 

  28. Wickramasinghe SN, Corridan B, Izaguirre J, Hasan R, Marjot DH. Ethnic differences in the biological consequences of alcohol abuse: a comparison between south Asian and European males. Alcohol Alcohol. 1995;30:675–80.

    CAS  PubMed  Google Scholar 

  29. Becker U, Deis A, Sørensen TI, Grønbaek M, Borch-Johnsen K, Müller CF, et al. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology. 1996;23:1025–9.

    Article  CAS  PubMed  Google Scholar 

  30. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–85.

    Article  CAS  PubMed  Google Scholar 

  31. Zintzaras E, Stefanidis I, Santos M, Vidal F. Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of alcoholism and alcohol liver disease? Hepatology. 2006;43:352–61.

    Article  CAS  PubMed  Google Scholar 

  32. Arner P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab. 2005;19:471–82.

    Article  CAS  PubMed  Google Scholar 

  33. Donnelly K, Smith CI, Schwarzenburg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holt HB, Wild SH, Wood PJ, Zhang J, Darekar AA, Dewbury K, Poole RB, Holt RI, Phillips DI, Byrne CD. Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia. 2006;49:141–8.

    Article  CAS  PubMed  Google Scholar 

  35. Bluher M. Clinical relevance of adipokines. Diabetes Metab J. 2012;36:317–27.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12:365–83.

    Article  CAS  PubMed  Google Scholar 

  37. Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology. 2006;131:934–45.

    Article  CAS  PubMed  Google Scholar 

  38. Polyzos SA, Kountouras J, Mantzoros CS. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism. 2015;64:60–78.

    Article  CAS  PubMed  Google Scholar 

  39. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell. 2005;120:261–73.

    Article  CAS  PubMed  Google Scholar 

  42. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52:59–69.

    Article  CAS  PubMed  Google Scholar 

  43. Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res. 2013;47:869–80.

    Article  CAS  PubMed  Google Scholar 

  44. Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2013;14:20704–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wieckowska A, McCullough AJ, Feldstein AE. Noninvasive diagnosis and monitoring of nonalcoholic steatohepatitis: present and future. Hepatology. 2007;46:582–9.

    Article  CAS  PubMed  Google Scholar 

  46. Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15:8713–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008;134:568–76.

    Article  CAS  PubMed  Google Scholar 

  48. Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, et al. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab. 2012;16:473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140:900–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lake AD, Novak P, Hardwick RN, Flores-Keown B, Zhao F, Klimecki WT, et al. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease. Toxicol Sci. 2014;137:26–35.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou H, Liu R. ER stress and hepatic lipid metabolism. Front Genet. 2014;5:112.

    PubMed  PubMed Central  Google Scholar 

  52. Hou NS, Gutschmidt A, Choi DY, Pather K, Shi X, Watts JL, et al. Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proc Natl Acad Sci U S A. 2014;111:E2271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Betrapally NS, Gillevet PM, Bajaj JS. Changes in the intestinal microbiome and alcoholic and nonalcoholic liver diseases: causes or effects? Gastroenterology. 2016;150:1745–55.

    Article  PubMed  Google Scholar 

  54. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR gamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:2398–408.

    Article  CAS  Google Scholar 

  56. den Besten G, Gerding A, van Dijk TH, Ciapaite J, Bleeker A, van Eunen K, et al. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PLoS One. 2015;10:e0136364.

    Article  CAS  Google Scholar 

  57. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.

    Article  CAS  Google Scholar 

  58. Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, et al. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology. 2016;151:733–46.

    Article  CAS  PubMed  Google Scholar 

  59. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1.

    Article  CAS  PubMed  Google Scholar 

  60. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–53.

    Article  CAS  PubMed  Google Scholar 

  61. Heymann F, Tacke F. Immunology in the liver–from homeostasis to disease. Nat Rev Gastroenterol Hepatol. 2016;13:88–110.

    Article  CAS  PubMed  Google Scholar 

  62. Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61:1294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704–20.

    Article  CAS  PubMed  Google Scholar 

  65. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by toll like receptor 5. Nature. 2001;410:1099–103.

    Article  CAS  PubMed  Google Scholar 

  66. Szabo G, Iracheta-Vellve A. Inflammasome activation in the liver: focus on alcoholic and non-alcoholic steatohepatitis. Clin Res Hepatol Gastroenterol. 2015;39:S18–23.

    Article  CAS  PubMed  Google Scholar 

  67. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66:1037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wree A, McGeough MD, Pena CA, Schlattjan M, Li H, Inzaugarat ME, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med. 2014;92:1069–82.

    Article  CAS  PubMed  Google Scholar 

  70. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. PNAS. 2011;108:15324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13:412–25.

    Article  CAS  PubMed  Google Scholar 

  73. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2017;14:455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology. 2016;150:956–67.

    Article  CAS  PubMed  Google Scholar 

  75. Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology. 2016;150:1769–77.

    Article  CAS  PubMed  Google Scholar 

  76. Rangwala F, Guy CD, Lu J, Suzuki A, Burchette JL, Abdelmalek MF, et al. Increased production of sonic hedgehog by ballooned hepatocytes. J Pathol. 2011;224:401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Natarajan SK, Ingham SA, Mohr AM, Wehrkamp CJ, Ray A, Roy S, et al. Saturated free fatty acids induce cholangiocyte lipoapoptosis. Hepatology. 2014;60:1942–56.

    Article  CAS  PubMed  Google Scholar 

  78. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol. 2005;25:2062–8.

    Article  CAS  PubMed  Google Scholar 

  80. Ralston JC, Lyons CL, Kennedy EB, Kirwan AM, Roche HM. Fatty acids and NLRP3 inflammasome-mediated inflammation in metabolic tissues. Annu Rev Nutr. 2017;37:77–102.

    Article  CAS  PubMed  Google Scholar 

  81. Caballero F, Fernández A, De Lacy AM, Fernández-Checa JC, Caballería J, García-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol. 2009;50:789–96.

    Article  CAS  PubMed  Google Scholar 

  82. Maloney E, Sweet IR, Hockenbery DM, Pham M, Rizzo NO, Tateya S, et al. Activation of NF-kappaB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler Thromb Vasc Biol. 2009;29:1370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Win S, Than TA, Le BH, García-Ruiz C, Fernandez-Checa JC, Kaplowitz N. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J Hepatol. 2015;62:1367–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 2014;59:154–69.

    Article  CAS  PubMed  Google Scholar 

  85. Hetherington AM, Sawyez CG, Zilberman E, Stoianov AM, Robson DL, Borradaile NM. Differential lipotoxic effects of palmitate and oleate in activated human hepatic stellate cells and epithelial hepatoma cells. Cell Physiol Biochem. 2016;39:1648–62.

    Article  CAS  PubMed  Google Scholar 

  86. Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29:245–54.

    PubMed  PubMed Central  Google Scholar 

  87. Bondy SC. Ethanol toxicity and oxidative stress. Toxicol Lett. 1992;63:231–41.

    Article  CAS  PubMed  Google Scholar 

  88. Bailey SM, Cunningham CC. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic Biol Med. 2002;32:11–6.

    Article  CAS  PubMed  Google Scholar 

  89. Lieber CS, DeCarli LM. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther. 1972;181:279–87.

    CAS  PubMed  Google Scholar 

  90. Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev. 1997;77:517–44.

    Article  CAS  PubMed  Google Scholar 

  91. Hansson T, Tindberg N, Ingelman-Sundberg M, Köhler C. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience. 1990;34:451–63.

    Article  CAS  PubMed  Google Scholar 

  92. Chacko KR, Reinus J. Spectrum of alcoholic liver disease. Clin Liver Dis. 2016;20:419–27.

    Article  PubMed  Google Scholar 

  93. Fujii H, Kawada N. Fibrogenesis in alcoholic liver disease. World J Gastroenterol. 2014;20:8048–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14:397–411.

    Article  CAS  PubMed  Google Scholar 

  95. Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med. 2008;44:723–38.

    Article  CAS  PubMed  Google Scholar 

  96. Brooks PJ. DNA damage, DNA repair, and alcohol toxicity–a review. Alcohol Clin Exp Res. 1997;21:1073–82.

    CAS  PubMed  Google Scholar 

  97. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. J Lipid Res. 1979;20:289–315.

    CAS  PubMed  Google Scholar 

  98. Galli A, Price D, Crabb D. High-level expression of rat class I alcohol dehydrogenase is sufficient for ethanol-induced fat accumulation in transduced HeLa cells. Hepatology. 1999;29:1164–70.

    Article  CAS  PubMed  Google Scholar 

  99. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. 2004;127:1798–808.

    Article  CAS  PubMed  Google Scholar 

  100. Viollet B, Guigas B, Leclerc J, Hébrard S, Lantier L, Mounier R, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf). 2009;196:81–98.

    Article  CAS  Google Scholar 

  101. Lu Y, Zhuge J, Wang X, Bai J, Cederbaum AI. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology. 2008;47:1483–94.

    Article  CAS  PubMed  Google Scholar 

  102. Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L, et al. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest. 2009;119:582–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. You M, Considine RV, Leone TC, Kelly DP, Crabb DW. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology. 2005;42:568–77.

    Article  CAS  PubMed  Google Scholar 

  104. Kang X, Zhong W, Liu J, Song Z, McClain CJ, Kang YJ, et al. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Hepatology. 2009;50:1241–50.

    Article  CAS  PubMed  Google Scholar 

  105. Crabb DW, Galli A, Fischer M, You M. Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator activated receptor alpha. Alcohol. 2004;34:35–8.

    Article  CAS  PubMed  Google Scholar 

  106. You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem. 2002;277:29342–7.

    Article  CAS  PubMed  Google Scholar 

  107. Zhao XJ, Dong Q, Bindas J, Piganelli JD, Magill A, Reiser J, et al. TRIF and IRF-3 binding to the TNF promoter results in macrophage TNF dysregulation and steatosis induced by chronic ethanol. J Immunol. 2008;181:3049–56.

    Article  CAS  PubMed  Google Scholar 

  108. Petrasek J, Dolganiuc A, Csak T, Nath B, Hritz I, Kodys K, et al. Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology. 2011;53:649–60.

    Article  CAS  PubMed  Google Scholar 

  109. McMullen MR, Pritchard MT, Wang Q, Millward CA, Croniger CM, Nagy LE. Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice. Gastroenterology. 2005;128:2066–76.

    Article  CAS  PubMed  Google Scholar 

  110. Hritz I, Mandrekar P, Velayudham A, Catalano D, Dolganiuc A, Kodys K, et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology. 2008;48:1224–31.

    Article  CAS  PubMed  Google Scholar 

  111. Yin M, Wheeler MD, Kono H, Bradford BU, Gallucci RM, Luster MI, et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology. 1999;117:942–52.

    Article  CAS  PubMed  Google Scholar 

  112. Wang T, Yang P, Zhan Y, Xia L, Hua Z, Zhang J. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice. Toxicology. 2013;314:193–201.

    Article  CAS  PubMed  Google Scholar 

  113. Thomes PG, Osna NA, Davis JS, Donohue TM. Cellular steatosis in ethanol oxidizing-HepG2 cells is partially controlled by the transcription factor, early growth response-1. Int J Biochem Cell Biol. 2013;45:454–63.

    Article  CAS  PubMed  Google Scholar 

  114. Jeong WI, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P, et al. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab. 2008;7:227–35.

    Article  CAS  PubMed  Google Scholar 

  115. Sharara-Chami RI, Zhou Y, Ebert S, Pacak K, Ozcan U, Majzoub JA. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice. Int J Biochem Cell Biol. 2012;44:905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Galligan JJ, Smathers RL, Shearn CT, Fritz KS, Backos DS, Jiang H, et al. Oxidative stress and the ER stress response in a murine model for early-stage alcoholic liver disease. J Toxicol. 2012;2012:207594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Zeng T, Zhang CL, Song FY, Zhao XL, Yu LH, Zhu ZP, et al. PI3K/Akt pathway activation was involved in acute ethanol-induced fatty liver in mice. Toxicology. 2012;296:56–66.

    Article  CAS  PubMed  Google Scholar 

  118. Yang L, Wu D, Wang X, Cederbaum AI. Cytochrome P4502E1, oxidative stress, JNK, and autophagy in acute alcohol-induced fatty liver. Free Radic Biol Med. 2012;53:1170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol. 2008;294:G892–8.

    Article  CAS  PubMed  Google Scholar 

  120. You MRC. Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med. 2009;2009:850–9.

    Article  CAS  Google Scholar 

  121. Horiguchi N, Wang L, Mukhopadhyay P, Park O, Jeong WI, Lafdil F, et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology. 2008;134:1148–58.

    Article  CAS  PubMed  Google Scholar 

  122. Czaja MJ. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology. 2011;140:1895–908.

    Article  PubMed  Google Scholar 

  123. Donohue TM Jr. Autophagy and ethanol-induced liver injury. World J Gastroenterol. 2009;15:1178–85.

    Article  CAS  PubMed  Google Scholar 

  124. Wu D, Wang X, Zhou R, Cederbaum A. CYP2E1 enhances ethanol-induced lipid accumulation but impairs autophagy in HepG2 E47 cells. Biochem Biophys Res Commun. 2010;402:116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Setshedi M, Wands JR, Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxidative Med Cell Longev. 2010;3:178–85.

    Article  Google Scholar 

  126. Farfán Labonne BE, Gutiérrez M, Gómez-Quiroz LE, Konigsberg Fainstein M, Bucio L, Souza V, et al. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol. 2009;25:599–609.

    Article  PubMed  CAS  Google Scholar 

  127. Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology. 2016;150:1756–68.

    Article  CAS  PubMed  Google Scholar 

  128. Voican CS, Njiké-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L, Agostini H, et al. Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 2015;35:967–78.

    Article  CAS  PubMed  Google Scholar 

  129. Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest. 2012;122:3476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yan AW, Fouts DE, Brandl J, Stärkel P, Torralba M, Schott E, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53:96–105.

    Article  CAS  PubMed  Google Scholar 

  131. Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology. 2009;50:638–44.

    Article  CAS  PubMed  Google Scholar 

  132. Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol. 2003;17:575–92.

    Article  CAS  PubMed  Google Scholar 

  133. Lemmers A, Moreno C, Gustot T, Marechal R, Degre D, Demetter P, et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology. 2009;49:646–57.

    Article  CAS  PubMed  Google Scholar 

  134. Dominguez M, Miquel R, Colmenero J, Moreno M, García-Pagán JC, Bosch J, et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology. 2009;136:1639–50.

    Article  PubMed  Google Scholar 

  135. Maltby J, Wright S, Bird G, Sheron N. Chemokine levels in human liver homogenates: associations between GRO alpha and histopathological evidence of alcoholic hepatitis. Hepatology. 1996;24:1156–60.

    CAS  PubMed  Google Scholar 

  136. Cohen JI, Roychowdhury S, McMullen MR, Stavitsky AB, Nagy LE. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology. 2010;139:664–74.

    Article  CAS  PubMed  Google Scholar 

  137. Pritchard MT, McMullen MR, Stavitsky AB, Cohen JI, Lin F, Medof ME, et al. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology. 2007;132:1117–26.

    Article  CAS  PubMed  Google Scholar 

  138. Roychowdhury S, McMullen MR, Pritchard MT, Hise AG, van Rooijen N, Medof ME, et al. An early complement-dependent and TLR-4-independent phase in the pathogenesis of ethanol-induced liver injury in mice. Hepatology. 2009;49:1326–34.

    Article  CAS  PubMed  Google Scholar 

  139. Albano E, Vidali M. Immune mechanisms in alcoholic liver disease. Genes Nutr. 2010;5:141–7.

    Article  CAS  PubMed  Google Scholar 

  140. Mottaran E, Stewart SF, Rolla R, Vay D, Cipriani V, Moretti M, et al. Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease. Free Radic Biol Med. 2002;32:38–45.

    Article  CAS  PubMed  Google Scholar 

  141. Thiele GM, Duryee MJ, Willis MS, et al. Autoimmune hepatitis induced by syngeneic liver cytosolic proteins biotransformed by alcohol metabolites. Alcohol Clin Exp Res. 2010;34:2126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Thiele GM, Freeman TL, Klassen LW. Immunologic mechanisms of alcoholic liver injury. Semin Liver Dis. 2004;24:273–87.

    Article  CAS  PubMed  Google Scholar 

  143. Moshage H, Casini A, Lieber CS. Acetaldehyde selectively stimulates collagen production in cultured rat liver fat-storing cells but not in hepatocytes. Hepatology. 1990;12:511–8.

    Article  CAS  PubMed  Google Scholar 

  144. Casini A, Cunningham M, Rojkind M, Lieber CS. Acetaldehyde increases procollagen type I and fibronectin gene transcription in cultured rat fat-storing cells through a protein synthesis-dependent mechanism. Hepatology. 1991;13:758–65.

    CAS  PubMed  Google Scholar 

  145. Mello T, Ceni E, Surrenti C, et al. Alcohol induced hepatic fibrosis: role of acetaldehyde. Mol Asp Med. 2008;29:17–21.

    Article  CAS  Google Scholar 

  146. Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F, Li Y, et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology. 2010;139:1375–84.

    Article  CAS  PubMed  Google Scholar 

  147. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand dependent manners. Gastroenterology. 2006;130:435–52.

    Article  CAS  PubMed  Google Scholar 

  148. Muhanna N, Abu Tair L, Doron S, Amer J, Azzeh M, Mahamid M, et al. Amelioration of hepatic fibrosis by NK cell activation. Gut. 2011;60:90–8.

    Article  CAS  PubMed  Google Scholar 

  149. Jeong WI, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology. 2006;44:1441–51.

    Article  CAS  PubMed  Google Scholar 

  150. Ness KJ, Fan J, Wilke WW, Coleman RA, Cook RT, Schlueter AJ. Chronic ethanol consumption decreases murine Langerhans cell numbers and delays migration of Langerhans cells as well as dermal dendritic cells. Alcohol Clin Exp Res. 2008;32:657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple noninvasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut. 2010;59:1265–9.

    Article  PubMed  Google Scholar 

  152. Loaeza-del-Castillo A, Paz-Pineda F, Oviedo-Cardenas E, Sanchez-Avila F, Vargas-Vorackova F. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver fibrosis. Ann Hepatol. 2008;7:350–7.

    Article  CAS  PubMed  Google Scholar 

  153. Chowdhury SD, Ramakrishna B, Eapen CE, Goel A, Zachariah UG, Chandramohan A, et al. Fibrosis in non-alcoholic fatty liver disease: correlation with simple blood indices and association with tumor necrosis factor-alpha polymorphisms. Trop Gastroenterol. 2013;34:31–5.

    Article  PubMed  Google Scholar 

  154. Williams AL, Hoofnagle JH. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. Gastroenterology. 1988;95:734–9.

    Article  CAS  PubMed  Google Scholar 

  155. Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008;57:1441–7.

    Article  CAS  PubMed  Google Scholar 

  156. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee TH, Han SH, Yang JD, Kim D, Ahmed M. Prediction of advanced fibrosis in nonalcoholic fatty liver disease: an enhanced model of BARD score. Gut Liver. 2013;7:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology. 2008;47:455–60.

    Article  PubMed  Google Scholar 

  159. Rosenberg WM, Voelker M, Thiel R, Becka M, Burt A, Schuppan D, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    Article  PubMed  Google Scholar 

  160. Nobili V, Parkes J, Bottazzo G, Marcellini M, Cross R, Newman D, et al. Performance of ELF serum markers in predicting fibrosis stage in pediatric non-alcoholic fatty liver disease. Gastroenterology. 2009;136:160–7.

    Article  CAS  PubMed  Google Scholar 

  161. McPherson S, Hardy T, Dufour JF, Petta S, Romero-Gomez M, Allison M, et al. Age as a confounding factor for the accurate non-invasive diagnosis of advanced NAFLD fibrosis. Am J Gastroenterol. 2017;112:740–51.

    Article  PubMed  Google Scholar 

  162. Poynard T, Ratziu V, Naveau S, Thabut D, Charlotte F, Messous D, et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comp Hepatol. 2005;4:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Lassailly G, Caiazzo R, Hollebecque A, Buob D, Leteurtre E, Arnalsteen L, et al. Validation of noninvasive biomarkers (FibroTest, SteatoTest, and NashTest) for prediction of liver injury in patients with morbid obesity. Eur J Gastroenterol Hepatol. 2011;23:499–506.

    Article  PubMed  Google Scholar 

  164. Ratziu V, Massard J, Charlotte F, Messous D, Imbert-Bismut F, Bonyhay L, et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Adams LA, George J, Bugianesi E, Rossi E, De Boer WB, van der Poorten D, et al. Complex non-invasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2011;26:1536–43.

    Article  CAS  PubMed  Google Scholar 

  166. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–54.

    Article  CAS  PubMed  Google Scholar 

  167. Boyle MP, Tiniakos DG, McPherson S, Ratziu V, Bedossa P, Hardy T, et al. Development and validation of the collagen neo-epitope biomarker Pro-C3 “FIB-C3 Score” for detection and staging of advanced non-alcoholic fatty liver disease in a large international multi-centre patient cohort. Hepatology. 2017;66:54a–5a.

    Google Scholar 

  168. Abdelmalek MF, Diehl AM, Guy CD, Portenier D, Sudan R, Li XJ, et al. Serum-based biomarker accurately stratifies hepatic fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. 2017;66:55a–6a.

    Google Scholar 

  169. Pimentel CF, Otsubo T, Challies TL, Nasser I, Francescucci A, Lai M. Combination of serum HA, CK18 and TIMP-1 predicts advanced fibrosis in nonalcoholic fatty liver disease. Hepatology. 2015;62:1260a–1a.

    Article  CAS  Google Scholar 

  170. Tanwar S, Trembling PM, Guha IN, Parkes J, Kaye P, Burt AD, et al. Validation of terminal peptide of procollagen III for the detection and assessment of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatology. 2013;57:103–11.

    Article  CAS  PubMed  Google Scholar 

  171. Daniels SJ, Nielsen MJ, Krag A, Eslam M, Karsdal MA, Leeming DJ, et al. Serum Pro-C3 combined with clinical parameters is superior to established serological fibrosis tests at identifying patients with advanced fibrosis among patients with non-alcoholic fatty liver disease. J Hepatol. 2017;66:S671.

    Article  Google Scholar 

  172. Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol. 2004;39:336–9.

    Article  CAS  Google Scholar 

  173. Lieber CS, Weiss DG, Morgan TR, Paronetto F. Aspartate aminotransferase to platelet ratio index in patients with alcoholic liver fibrosis. Am J Gastroenterol. 2006;101:1500–8.

    Article  CAS  PubMed  Google Scholar 

  174. Naveau S, Raynard B, Ratziu V, Abella A, Imbert-Bismut F, Messous D, et al. Biomarkers for the prediction of liver fibrosis in patients with chronic alcoholic liver disease. Clin Gastroenterol Hepatol. 2005;3:167–74.

    Article  PubMed  Google Scholar 

  175. Cales P, Oberti F, Michalak S, Hubert-Fouchard I, Rousselet MC, Konate A, et al. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology. 2005;42:1373–81.

    Article  PubMed  Google Scholar 

  176. Ito K, Mitchell DG, Hann HW, Outwater EK, Kim Y. Compensated cirrhosis due to viral hepatitis: using MR imaging to predict clinical progression. AJR Am J Roentgenol. 1997;169:801–5.

    Article  CAS  PubMed  Google Scholar 

  177. Harbin WP, Robert NJ, Ferrucci JT. Diagnosis of cirrhosis based on regional changes in hepatic morphology. Radiology. 1980;135:273–83.

    Article  CAS  PubMed  Google Scholar 

  178. Torres WE, Whitmire LF, Gedgaudas-McClees K, Bernardino ME. Computed tomography of hepatic morphologic changes in cirrhosis of the liver. J Comput Assist Tomogr. 1986;11:47–50.

    Article  Google Scholar 

  179. Penny SM. Alcoholic liver disease. Radiol Technol. 2013;84:577–92.

    PubMed  Google Scholar 

  180. Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging. 2011;34:729–49.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology. 2013;267:422–31.

    Article  PubMed  PubMed Central  Google Scholar 

  182. d’Assignies G, Fontés G, Kauffmann C, Latour M, Gaboury L, Boulanger Y, et al. Early detection of liver steatosis by magnetic resonance imaging in rats infused with glucose and intralipid solutions and correlation to insulin levels. Metabolism. 2013;62:1850–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Yokoo T, Serai SD, Pirasteh A, Bashir MR, Hamilton G, Hernando D, et al. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: a meta-analysis. Radiology. 2018;286:486–98.

    Article  PubMed  Google Scholar 

  184. Wong VW, Petta S, Hiriart JB, Cammà C, Wong GL, Marra F, et al. Validity criteria for the diagnosis of fatty liver by M probe-based controlled attenuation parameter. J Hepatol. 2017;67:577–84.

    Article  PubMed  Google Scholar 

  185. de Lédinghen V, Vergniol J, Capdepont M, Chermak F, Hiriart JB, Cassinotto C, et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol. 2014;60:1026–31.

    Article  PubMed  Google Scholar 

  186. Foucher J, Chanteloup E, Vergniol J, Castera L, Le Bail B, Adhoute X, et al. Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut. 2006;55:403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zoli M, Cordiani MR, Marchesini G, Lervese T, Labate AM, Bonazzi C, et al. Prognostic indicators in compensated cirrhosis. Am J Gastroenterol. 1991;86:1508–13.

    CAS  PubMed  Google Scholar 

  188. Nahon P, Kettaneh A, Tengher-Barna J, Ziol M, de Le’dinghen V, Douvin C, et al. Assessment of liver fibrosis using transient elastography in patients with alcoholic liver disease. J Hepatol. 2008;49:1062–8.

    Article  PubMed  Google Scholar 

  189. Janssens F, de Suray N, Piessevaux H, Horsmans Y, de Timary P, Starkel P. Can transient elastography replace liver histology for determination of advanced fibrosis in alcoholic patients: a real-life study. J Clin Gastroenterol. 2010;44:575–82.

    PubMed  Google Scholar 

  190. Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, et al. Magnetic resonance elastography vs. transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152:598–607.

    Article  PubMed  Google Scholar 

  191. Wong VW, Vergniol J, Wong GL, Foucher J, Chan AW, Chermak F, et al. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2012;107:1862–71.

    Article  PubMed  Google Scholar 

  192. Tapper EB, Challies T, Nasser I, Afdhal NH, Lai M. The performance of vibration controlled transient elastography in a US cohort of patients with nonalcoholic fatty liver disease. Am J Gastroenterol. 2016;111:677–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cassinotto C, Boursier J, de Lédinghen V, Lebigot J, Lapuyade B, Cales P, et al. Liver stiffness in nonalcoholic fatty liver disease: a comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology. 2016;63:1817–27.

    Article  PubMed  Google Scholar 

  194. Ochi H, Hirooka M, Koizumi Y, Miyake T, Tokumoto Y, Soga Y, et al. Real-time tissue elastography for evaluation of hepatic fibrosis and portal hypertension in nonalcoholic fatty liver diseases. Hepatology. 2012;56:1271–8.

    Article  PubMed  Google Scholar 

  195. Cui J, Heba E, Hernandez C, Haufe W, Hooker J, Andre MP, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology. 2016;63:453–61.

    Article  PubMed  Google Scholar 

  196. Chen J, Yin M, Talwalkar JA, Oudry J, Glaser KJ, Smyrk TC, et al. Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology. 2017;283:418–28.

    Article  PubMed  Google Scholar 

  197. Imajo K, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mawatari H, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–37.

    Article  PubMed  Google Scholar 

  198. Anstee QM, Seth D, Day CP. Genetic factors that affect risk of alcoholic and nonalcoholic fatty liver disease. Gastroenterology. 2016;150:1728–44.

    Article  PubMed  Google Scholar 

  199. Severson TJ, Besur S, Bonkovsky HL. Genetic factors that affect nonalcoholic fatty liver disease: a systematic clinical review. World J Gastroenterol. 2016;22:6742–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dongiovanni P, Valenti L. Genetics of nonalcoholic fatty liver disease. Metabolism. 2016;65:1026–37.

    Article  CAS  PubMed  Google Scholar 

  201. Kahali B, Halligan B, Speliotes EK. Insights from genome-wide association analyses of nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:375–91.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Loomba R, Schork N, Chen CH, Bettencourt R, Bhatt A, Ang B, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology. 2015;149:1784–93.

    Article  PubMed  Google Scholar 

  203. Salameh H, Raff E, Erwin A, Seth D, Nischalke HD, Falleti E, et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol. 2015;110:846–56.

    Article  CAS  PubMed  Google Scholar 

  204. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–78.

    Article  PubMed  Google Scholar 

  205. Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kearns M, Wands JR, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51:121–9.

    Article  CAS  PubMed  Google Scholar 

  206. Lassailly G, Caiazzo R, Buob D, Pigeyre M, Verkindt H, Labreuche J, et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology. 2015;149:379–88.

    Article  PubMed  Google Scholar 

  207. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology. 2018;67:328–57.

    Article  PubMed  Google Scholar 

  208. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Boettcher E, Csako G, Pucino F, Wesley R, Loomba R. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35:66–75.

    Article  CAS  PubMed  Google Scholar 

  210. Mahady SE, Webster AC, Walker S, Sanyal A, George J. The role of thiazolidinediones in non-alcoholic steatohepatitis – a systematic review and meta analysis. J Hepatol. 2011;55:1383–90.

    Article  CAS  PubMed  Google Scholar 

  211. Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med. 2016;165:305–15.

    Article  PubMed  Google Scholar 

  212. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.

    Article  CAS  PubMed  Google Scholar 

  213. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679–90.

    Article  CAS  PubMed  Google Scholar 

  214. Clinical Trials.gov. Emricasan, a caspase inhibitor, or treatment of subjects with decompensated NASH cirrhosis (ENCORE-LF). https://clinicaltrials.gov/ct2/show/NCT03205345?term=emricasan&draw=1&rank=1.

  215. Clinical Trials.gov. Clinical trial to evaluation the safety and efficacy of GR-MD-02 for the treatment of liver fibrosis and resultant portal hypertension in patients with NASH cirrhosis (NASH-CX). https://clinicaltrials.gov/ct2/show/NCT02462967.

  216. Clinical Trials.gov. A study of experimental medication BMS-986036 in adults with nonalcoholic steatohepatitis (NASH) and liver cirrhosis. https://clinicaltrials.gov/ct2/show/NCT03486912?cond=Nonalcoholic+Steatohepatitis+cirrhosis&rank=6.

  217. Clinical Trials.gov. Study Evaluating the Efficacy and Safety of Obeticholic Acid in Subjects With Compensated Cirrhosis Due to Nonalcoholic Steatohepatitis. https://clinicaltrials.gov/ct2/show/NCT03439254?cond=Nonalcoholic+Steatohepatitis+cirrhosis&rank=2.

  218. Clinical Trials.gov. Safety and efficacy of selonsertib, GS-0976, GS-9674, and combinations in participants with bridging fibrosis or compensated cirrhosis due to nonalcoholic steatohepatitis. https://clinicaltrials.gov/ct2/show/NCT03449446?cond=Nonalcoholic+Steatohepatitis+cirrhosis&rank=9.

  219. Clinical Trials.gov. Safety and efficacy of selonsertib in adults with compensated cirrhosis due to nonalcoholic steatohepatitis (NASH) (STELLAR 4). https://clinicaltrials.gov/ct2/show/NCT03053063.

  220. Wang X, Li J, Riaz DR, Shi G, Liu C, Dai Y. Outcomes of liver transplantation for nonalcoholic steatohepatitis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2014;12:394–402.

    Article  PubMed  Google Scholar 

  221. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–55.

    Article  PubMed  Google Scholar 

  222. Goldberg D, Ditah IC, Saeian K, Lalehzari M, Aronsohn A, Gorospe EC, Charlton M. Changes in the prevalence of hepatitis C virus infection, non-alcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology. 2017;152:1090–9.

    Article  PubMed  Google Scholar 

  223. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–53.

    Article  PubMed  Google Scholar 

  224. Pessione F, Ramond MJ, Peters L, Pham BN, Batel P, Rueff B, et al. Five-year survival predictive factors in patients with excessive alcohol intake and cirrhosis. Effect of alcoholic hepatitis, smoking and abstinence. Liver Int. 2003;23:45–53.

    Article  CAS  PubMed  Google Scholar 

  225. Borowsky SA, Strome S, Lott E. Continued heavy drinking and survival in alcoholic cirrhotics. Gastroenterology. 1981;80:1405–9.

    Article  CAS  PubMed  Google Scholar 

  226. Brunt PW, Kew MC, Scheuer PJ, Sherlock S. Studies in alcoholic liver disease in Britain. I. Clinical and pathological patterns related to natural history. Gut. 1974;15:52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Luca A, Garcia-Pagan JC, Bosch J, Feu F, Caballeria J, Groszmann RJ, et al. Effects of ethanol consumption on hepatic hemodynamics in patients with alcoholic cirrhosis. Gastroenterology. 1997;112:1284–9.

    Article  CAS  PubMed  Google Scholar 

  228. Miller WR, Walters ST, Bennett ME. How effective is alcoholism treatment in the United States? J Stud Alcohol. 2001;62:211–20.

    Article  CAS  PubMed  Google Scholar 

  229. Addolorato G, Mirijello A, Barrio P, Gual A. Treatment of alcohol use disorders in patients with alcoholic liver disease. J Hepatol. 2016;65:618–30.

    Article  PubMed  Google Scholar 

  230. Addolorato G, Mirijello A, Leggio L. Alcohol addiction: toward a patient oriented pharmacological treatment. Expert Opin Pharmacother. 2013;14:2157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lee MR, Leggio L. Management of alcohol use disorder in patients requiring liver transplant. Am J Psychiatry. 2015;172:1182–9.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Addolorato G, Leggio L, Ferrulli A, Cardone S, Vonghia L, Mirijello A, et al. Effectiveness and safety of baclofen for maintenance of alcohol abstinence in alcohol-dependent patients with liver cirrhosis: randomised, double-blind controlled study. Lancet. 2007;370:1915–22.

    Article  CAS  PubMed  Google Scholar 

  233. Clinical Trials.gov. Nalmefene in patients with alcoholic compensated cirrhosis for the treatment of alcohol dependence. (NalmeCir). https://clinicaltrials.gov/ct2/show/NCT02824354?cond=Nalmefene&rank=1.

  234. Stickel F, Hoehn B, Schuppan D, Seitz HK. Review article: nutritional therapy in alcoholic liver disease. Aliment Pharmacol Ther. 2003;18:357–73.

    Article  CAS  PubMed  Google Scholar 

  235. Mezey E. Interaction between alcohol and nutrition in the pathogenesis of alcoholic liver disease. Semin Liver Dis. 1991;11:340–8.

    Article  CAS  PubMed  Google Scholar 

  236. Burra P, Senzolo M, Adam R, Delvart V, Karam V, Germani G, et al. Liver transplantation for alcoholic liver disease in Europe: a study from the ELTR (European Liver Transplant Registry). Am J Transplant. 2010;10:138–48.

    Article  CAS  PubMed  Google Scholar 

  237. O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Am J Gastroenterol. 2010;105:14–32.

    Article  PubMed  Google Scholar 

  238. Murray KF, Carithers RL. AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology. 2005;41:1407–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Hiasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyake, T., Hiasa, Y. (2019). Liver Cirrhosis with Steatohepatitis: Nonalcoholic Steatohepatitis and Alcoholic Steatohepatitis. In: Yoshiji, H., Kaji, K. (eds) The Evolving Landscape of Liver Cirrhosis Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-7979-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7979-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7663-4

  • Online ISBN: 978-981-13-7979-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics