Skip to main content

Salient Biotechnological Interventions in Saffron (Crocus sativus L.): A Major Source of Bio-active Apocarotenoids

  • Chapter
  • First Online:
Natural Bio-active Compounds

Abstract

Crocus sativus (L.) is considered to be one of the high-value spices cultivated around the globe, and hence is under scanner of the genomic approaches that have been used to study the identification, expression, and regulation of the key genes involved in its flower development and apocarotenoid biosynthesis. C. sativus flower contains in excess of 150 compounds of aromatic and vaporescent. It produces remarkable amounts of apocarotenoids, such as crocin, picrocrocin, and safranal, that exhibit a wide range of anticancer, neuroprotective, anti-inflammatory, and cardioprotective activities. These apocarotenoids displaying such a wide range of pharmacological activities are of huge interest to culinary and pharmaceutical industries. Advances in biotechnological interventions, like genomic technologies, functional genomics, and transcriptomics studies, have revealed the expression of genes and/or structure, function, evolution, mapping, and editing of genes encoding apocarotenoid biosynthesis and enabled C. sativus genetic improvements in an efficient way through molecular breeding programs. The application of genomic tools and techniques has encouraged C. sativus breeders to adopt precision breeding approaches. The present chapter attempts to traverse across the recent developments in genetics and genomics-based researches conducted in C. sativus to perceive the biosynthetic pathways of its major secondary metabolites.

Maryam Vahedi and Saikat Gantait have equally contributed for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Saito H (2000) Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 14:149–152

    Article  CAS  PubMed  Google Scholar 

  • Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-Parkinsonian rat model. Pharmacol Biochem Behav 81:805–813

    Article  CAS  PubMed  Google Scholar 

  • Ahrazem O, Trapero A, Gómez MD, Rubio-Moraga A, Gómez-Gómez L (2010) Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: a deeper study in Crocus sativus and its allies. Genomics 96:239–250

    Article  CAS  PubMed  Google Scholar 

  • Ahrazem O, Rubio-Moraga A, Trapero A, Gómez-Gómez L (2011) Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. J Exp Bot 63:681–694

    Article  PubMed  CAS  Google Scholar 

  • Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez-Gómez L (2015) Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus. Front Plant Sci 6:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahrazem O, Argandoña J, Castillo R, Rubio-Moraga A, Gómez-Gómez L (2016) Identification and cloning of differentially expressed SOUL and ELIP genes in saffron stigmas using a subtractive hybridization approach. PLoS One 11:e0168736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Álvarez-Ortí M, Gómez-Gómez L, Rubio A, Escribano J, Pardo J, Jiménez F, Fernández JA (2004a) Development and gene expression in saffron corms. Acta Hortic 650:141–154

    Article  Google Scholar 

  • Álvarez-Ortí M, Schwarzacher T, Rubio A, Blazquez S, Piqueras A, Fernandez JA, Heslop-Harrison P (2004b) Studies on expression of genes involved in somatic embryogenesis and storage protein accumulation in saffron crocus (Crocus sativus L.). Acta Hortic 650:155–163

    Article  Google Scholar 

  • Ashraf N, Jain D, Vishwakarma RA (2015) Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. BMC Plant Biol 15:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N (2015a) Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot 99:80–87

    Article  CAS  Google Scholar 

  • Baba SA, Jain D, Abbas N, Ashraf N (2015b) Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. J Plant Physiol 189:114–125

    Article  CAS  PubMed  Google Scholar 

  • Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015c) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16:698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baba SA, Vishwakarma RA, Ashraf N (2017) Functional characterization of CsBGlu12, a β-glucosidase from Crocus sativus, provides insights into its role in abiotic stress through accumulation of antioxidant flavonols. J Biol Chem 292:4700–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babaei S, Talebi M, Bahar M (2014a) Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control 35:323–328

    Article  CAS  Google Scholar 

  • Babaei S, Talebi M, Bahar M, Zeinali H (2014b) Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Sci Hortic 171:27–31

    Article  CAS  Google Scholar 

  • Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50:761–786

    Article  CAS  PubMed  Google Scholar 

  • Bhandari P (2015) Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tradit Compl Med 5:81–87

    Article  Google Scholar 

  • Bolhassani A, Khavari A, Bathaie SZ (2014) Saffron and natural carotenoids: biochemical activities and anti-tumour effects. Biochim Biophys Acta 1845:20–30

    CAS  PubMed  Google Scholar 

  • Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busconi M, Colli L, Sánchez RA, Santaella M, Pascual MDLM, Santana O, Roldán M, Fernández JA (2015) AFLP and MS-AFLP analysis of the variation within saffron crocus (Crocus sativus L.) germplasm. PLoS One 10:e0123434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem 54:973–979

    Article  CAS  PubMed  Google Scholar 

  • Castillo R, Fernández JA, Gómez-Gómez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S (2016) Transcriptome from saffron (Crocus sativus) plants in Jammu and Kashmir reveals abundant soybean mosaic virus transcripts and several putative pathogen bacterial and fungal genera. bioRxiv. preprint. https://doi.org/10.1101/079186

  • Côté F, Cormier F, Dufresne C, Willemot C (2000) Properties of a glucosyltransferase involved in crocin synthesis. Plant Sci 153:55–63

    Article  Google Scholar 

  • D’Agostino N, Pizzichini D, Chiusano ML, Giuliano G (2007) An EST database from saffron stigmas. BMC Plant Biol 7:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dufresne C, Cormier F, Dorion S, Niggli UA, Pfister S, Pfander H (1999) Glycosylation of encapsulated crocetin by a Crocus sativus L. cell culture. Enzym Microb Technol 24:453–462

    Article  CAS  Google Scholar 

  • Escribano J, Alonso GL, Coca-Prados M, Fernandez JA (1996) Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett 100:23–30

    Article  CAS  PubMed  Google Scholar 

  • Fernández JA (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159

    Google Scholar 

  • Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, Rubio-Moraga A, Beyer P, Gomez-Gomez L, Al-Babili S, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci 111:12246–12251

    Article  CAS  PubMed  Google Scholar 

  • Ganie SH, Upadhyay P, Das S, Sharma MP (2015) Authentication of medicinal plants by DNA markers. Plant Gene 4:83–99

    Article  CAS  Google Scholar 

  • Gantait S, Vahedi M (2015) In vitro regeneration of high value spice Crocus sativus L.: a concise appraisal. J Appl Res Med Aromat Plants 2:124–133

    Google Scholar 

  • Gantait S, Debnath S, Ali MN (2014) Genomic profile of the plants with medicinal importance. 3Biotech 4:563–578

    Google Scholar 

  • Georgiadou G, Tarantilis PA, Pitsikas N (2012) Effects of the active constituents of Crocus sativus L., crocins, in an animal model of obsessive–compulsive disorder. Neurosci Lett 528:27–30

    Article  CAS  PubMed  Google Scholar 

  • Geromichalos GD, Papadopoulos T, Sahpazidou D, Sinakos Z (2014) Safranal, a Crocus sativus L. constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study. Food Chem Toxicol 74:45–50

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Moraga-Rubio A, Ahrazem O (2010) Understanding carotenoid metabolism in saffron stigmas: unravelling aroma and color formation. Func Plant Sci Biotech 4:56–63

    Google Scholar 

  • Gómez-Gómez L, Trapero-Mozos A, Gómez MD, Rubio-Moraga A, Ahrazem O (2012) Identification and possible role of a MYB transcription factor from saffron (Crocus sativus). J Plant Physiol 169:509–515

    Article  PubMed  CAS  Google Scholar 

  • Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, Kumari S, Arya DS (2010) Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastructural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine 17:227–232

    Article  PubMed  CAS  Google Scholar 

  • Guleria P, Goswami D, Yadav KS (2012) Computational identification of miRNAs and their targets from Crocus sativus L. Arch Biol Sci 64:65–70

    Article  Google Scholar 

  • Hariri AT, Moallem SA, Mahmoudi M, Memar B (2010) Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: protective effects of crocin and safranal. Food Chem Toxicol 48:2803–2808

    Article  CAS  PubMed  Google Scholar 

  • Harpke D, Meng S, Rutten T, Kerndorff H, Blattner FR (2013) Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Mol Phylogenet Evol 66:617–627

    Article  PubMed  Google Scholar 

  • Himeno H, Sano K (1987) Synthesis of crocin, picrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric Biol Chem 51:2395–2400

    CAS  Google Scholar 

  • Hosseinzadeh H (2009) Saffron and its constituents: new pharmacological findings. Planta Med 75:SL58

    Google Scholar 

  • Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. Acta Hortic 650:435–445

    Article  CAS  Google Scholar 

  • Huang W, Li F, Liu Y, Long C (2015) Identification of Crocus sativus and its adulterants from Chinese markets by using DNA barcoding technique. Iran J Biotechnol 13:36–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Husaini AM, Wani SA, Sofi P, Rather AG, Parray GA, Shikari AB, Mir JI (2009) Bioinformatics for saffron (Crocus sativus L.) improvement. Commun Biometry Crop Sci 4:3–8

    Google Scholar 

  • Iqbal MZRJ, Ahmed N, Mokhdomi TA, Wafai AH, Wani SH, Bukhari S, Amin A, Qadri RA (2013) Relative expression of apocarotenoid biosynthetic genes in developing stigmas of Crocus sativus L. J Crop Sci Biotechnol 16:183–188

    Article  Google Scholar 

  • Jain M, Srivastava PL, Verma M, Ghangal R, Garg R (2016) De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 6:22456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javandoost A, Afshari A, Nikbakht-Jam I, Khademi M, Eslami S, Nosrati M, Ferns G (2017) Effect of crocin, a carotenoid from saffron, on plasma cholesteryl ester transfer protein and lipid profile in subjects with metabolic syndrome: a double blind randomized clinical trial. ARYA Atheroscler 13:245–252

    PubMed  PubMed Central  Google Scholar 

  • Jiang C, Cao L, Yuan Y, Chen M, Jin Y, Huang L (2014) Barcoding melting curve analysis for rapid, sensitive, and discriminating authentication of saffron (Crocus sativus L.) from its adulterants. Biomed Res Int 2014:809037

    PubMed  PubMed Central  Google Scholar 

  • Joukar S, Najafipour H, Khaksari M, Sepehri G, Shahrokhi N, Dabiri S, Gholamhosenian A, Hasanzadeh S (2010) The effect of saffron consumption on biochemical and histopathological heart indices of rats with myocardial infarction. Cardiovasc Toxicol 10:66–71

    Article  CAS  PubMed  Google Scholar 

  • Kalivas A, Pasentsis K, Polidoros AN, Tsaftaris AS (2007) Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. DNA Seq 18:120–130

    Article  CAS  PubMed  Google Scholar 

  • Lozano P, Delgado D, Gomez D, Rubio M, Iborra JL (2000) A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J Biochem Biophys Methods 43:367–378

    Article  CAS  PubMed  Google Scholar 

  • Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D (2006) Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem 287:127–135

    Article  CAS  PubMed  Google Scholar 

  • Malik AH, Ashraf N (2017) Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol Gen Genomics 292:619–633

    Article  CAS  Google Scholar 

  • Marieschi M, Torelli A, Bruni R (2012) Quality control of saffron (Crocus sativus L.): development of SCAR markers for the detection of plant adulterants used as bulking agents. J Agric Food Chem 60:10998–11004

    Article  CAS  PubMed  Google Scholar 

  • Melnyk JP, Wang S, Marcone MF (2010) Chemical and biological properties of the world’s most expensive spice: saffron. Food Res Int 43:1981–1989

    Article  CAS  Google Scholar 

  • Mir JI, Ahmed N, Wafai AH, Qadri RA (2012) Relative expression of CsZCD gene and apocarotenoid biosynthesis during stigma development in Crocus sativus L. Physiol Mol Biol Plant 18:371–375

    Article  CAS  Google Scholar 

  • Mir JI, Ahmed N, Khan MH, Mokhdomi TA (2015a) Apocarotenoid gene expression in saffron (Crocus sativus L.). Sci Res Essays 10:482–488

    Article  CAS  Google Scholar 

  • Mir JI, Ahmed N, Singh DB, Khan MH, Zaffer S, Shafi W (2015b) Breeding and biotechnological opportunities in saffron crop improvement. Afr J Agric Res 10:970–974

    Article  CAS  Google Scholar 

  • Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V (2016) DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J 14:8–21

    Article  CAS  PubMed  Google Scholar 

  • Modaghegh M, Shahabian M, Esmaeili H, Rajbai O, Hosseinzadeh H (2008) Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine 15:1032–1037

    Article  PubMed  Google Scholar 

  • Mohamadpour AH, Ayati Z, Parizadeh MR, Rajbai O, Hosseinzadeh H (2013) Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci 16:39–46

    PubMed  PubMed Central  Google Scholar 

  • Molina RV, Valero M, Navarro Y, Guardiola JL, Garcia-Luis A (2005) Temperature effects on flower formation in saffron (Crocus sativus L.). Sci Hortic 103:361–379

    Article  Google Scholar 

  • Moradzadeh M, Sadeghnia HR, Tabarraei A, Sahebkar A (2018) Anti-tumor effects of crocetin and related molecular targets. J Cell Physiol 233:2170–2182

    Article  CAS  PubMed  Google Scholar 

  • Moshiri M, Vahabzadeh M, Hosseinzadeh H (2014) Clinical applications of saffron (Crocus sativus) and its constituents: a review. Drug Res 64:1–9

    Article  Google Scholar 

  • Namin MH, Ebrahimzadeh H, Ghareyazie B, Radjabian T, Gharavi S, Tafreshi N (2009) In vitro expression of apocarotenoid genes in Crocus sativus L. Afr J Biotechnol 8:5378–5382

    CAS  Google Scholar 

  • Petersen G, Seberg O, Thorsøe S, Jørgensen T, Mathew B (2008) A phylogeny of the genus Crocus (Iridaceae) based on sequence data from five plastid regions. Taxon 57:487–499

    Google Scholar 

  • Pitsikas N (2015) The effect of Crocus sativus L. and its constituents on memory: basic studies and clinical applications. Evid Based Compl Altern Med 2015:926284. https://doi.org/10.1155/2015/926284

    Article  Google Scholar 

  • Premkumar K, Abraham SK, Santhiya ST, Ramesh A (2003) Protective effects of saffron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in Swiss albino mice. Phytother Res 17:614–617

    Article  CAS  PubMed  Google Scholar 

  • Rajaei Z, Hadjzadeh MAR, Nemati H, Hosseini M, Ahmadi M, Shafiee S (2013) Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 16:206–210

    Article  CAS  PubMed  Google Scholar 

  • Renau-Morata B, Nebauer SG, Sánchez M, Molina RV (2012) Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.). Ind Crop Prod 39:40–46

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC, Giner RM, Manez S (1996) An updated review of saffron and its active constituents. Phytother Res 10:189–193

    Article  CAS  Google Scholar 

  • Rosati C, Diretto G, Giuliano G (2009) Biosynthesis and engineering of carotenoids and apocarotenoids in plants: state of the art and future prospects. Biotechnol Gen Eng Rev 26:139–162

    Article  Google Scholar 

  • Rubio-Moraga A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825

    Article  CAS  Google Scholar 

  • Rubio-Moraga A, Mozos AT, Ahrazem O, Gómez-Gómez L (2009) Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. BMC Plant Biol 9:109

    Article  CAS  Google Scholar 

  • Rubio-Moraga A, Trapero-Mozos A, Gómez-Gómez L, Ahrazem O (2010) Intersimple sequence repeat markers for molecular characterization of Crocus cartwrightianus cv. albus. Indust Crops Prod 32:147–151

    Article  CAS  Google Scholar 

  • Rubio-Moraga A, Ahrazem O, Pérez-Clemente RM, Gómez-Cadenas A, Yoneyama K, López-Ráez JA, Gómez-Gómez L (2014a) Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biol 14:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio-Moraga A, Rambla JL, Fernández de Carmen A, Trapero-Mozos A, Ahrazem O, Orzáez D, Granell A, Gómez-Gómez L (2014b) New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Mol Biol 86:555–569

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Sarkar IN (2012) Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 14:238–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen XC, Qian ZY (2006) Effects of crocetin on antioxidant enzymatic activities in cardiac hypertrophy induced by norepinephrine in rats. Pharmazie 61:348–352

    CAS  PubMed  Google Scholar 

  • Soffritti G, Busconi M, Sánchez RA, Thiercelin JM, Polissiou M, Roldán M, Fernández JA (2016) Genetic and epigenetic approaches for the possible detection of adulteration and auto-adulteration in saffron (Crocus sativus L.) spice. Molecules 21:343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr 699:107–118

    Article  CAS  Google Scholar 

  • Timberlake CF, Henry BS (1986) Plant pigments as natural food colours. Endeavour 10:31–36

    Article  CAS  PubMed  Google Scholar 

  • Torelli A, Marieschi M, Bruni R (2014) Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control 36:126–131

    Article  CAS  Google Scholar 

  • Tsaftaris AS, Pasentsis K, Iliopoulos I, Polidoros AN (2004) Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci 166:1235–1243

    Article  CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Pasentsis K, Kalivas A (2007) Cloning, structural characterization, and phylogenetic analysis of flower MADS-box genes from crocus (Crocus sativus L.). Sci World J 7:1047–1062

    Article  Google Scholar 

  • Tsaftaris A, Pasentzis K, Argiriou A (2010) Rolling circle amplification of genomic templates for inverse PCR (RCA–GIP): a method for 5′-and 3′-genome walking without anchoring. Biotech Lett 32:157

    Article  CAS  Google Scholar 

  • Tsaftaris A, Pasentsis K, Makris A, Darzentas N, Polidoros A, Kalivas A, Argiriou A (2011) The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors. J Plant Physiol 168:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Wafai AH, Bukhari S, Mokhdomi TA, Amin A, Wani Z, Hussaini A, Mir JI, Qadri RA (2015) Comparative expression analysis of senescence gene CsNAP and B-class floral development gene CsAP3 during different stages of flower development in saffron (Crocus sativus L.). Physiol Mol Biol Plants 21:459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang M, Qian ZY, Zhou CH, Liu J, Li WN (2006) Crocetin inhibits leukocyte adherence to vascular endothelial cells induced by AGEs. J Ethnopharmacol 107:25–31

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Shi Y, Wu L, Guo L, Liu W, Xiong C, Yan S, Sun W, Chen S (2016) Rapid authentication of the precious herb saffron by loop-mediated isothermal amplification (LAMP) based on internal transcribed spacer 2 (ITS2) sequence. Sci Rep 6:25370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinati Z, Shamloo-Dashtpagerd R, Behpouri A (2016) In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma. Mol Biol Res Commun 5:233

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the anonymous reviewers and the editor of this chapter for their critical comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Vahedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vahedi, M., Karimi, R., Panigrahi, J., Gantait, S. (2019). Salient Biotechnological Interventions in Saffron (Crocus sativus L.): A Major Source of Bio-active Apocarotenoids. In: Akhtar, M., Swamy, M. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7438-8_8

Download citation

Publish with us

Policies and ethics