Skip to main content
Log in

Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of cancer related mortality worldwide. Crocetin, saffron plant derivative known to play a role in cancer chemoprevention. In the present study the effects of crocetin was tested against lung cancer-bearing mice in both pre-initiation and post-initiation periods. Healthy male Swiss albino mice (6–8 weeks old) were used throughout the study. Experiment was designed with the treatment regimen of crocetin [20 mg/kg body weight dissolved in dimethyl sulphoxide (DMSO)] for 4 weeks before (pre-initiation) and from 12th week after Benzo(a) pyrene B(a)p (50 mg/kg body weight) induced lung carcinoma(post-initation). The level of lipid peroxidation (LPO) and marker enzymes markedly increased in carcinogen administered animals, which was brought back to near normal by crocetin treatment. The activities of the enzymic antioxidants and glutathione metabolizing enzymes were decreased in B(a)p induced animals and increased upon drug treatment. Crocetin profoundly reverted back the pathological changes observed in cancerous animals. From the results crocetin proves to scavenge free radical and plays an important role in cellular function. Tumor incidence and histopathological studies proves crocetin is a potent antitumour agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hans peter W, Deuter M, Imilda E: Chemoprevention of tobacco smoke induced lung carcinogenesis in mice. Carcinogenesis 21: 977–82, 2000

    Article  Google Scholar 

  2. Anto RJ, Mukhopadyah A, Denning K, Aggarwal BB: Curcumin induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 23: 143–50, 2002

    Article  PubMed  CAS  Google Scholar 

  3. Stephen S, Pramod Upadhaya, Mingyao Wang, Robin L. Bliss, Edward J. Mcintee,Patrick MJ Kenney: Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)-L- cysteine and myo-inositol, individually and in combination. Carcinogenesis 29: 1455–1461, 2002

    Google Scholar 

  4. Demming-Adams B, Gilmore AM,Adams WW: In Vivo Functions Of Carotenoids In Higher Plants, FASEB Journal 10: 403–412, 1996

    Google Scholar 

  5. Jagadeswaran R, Thirunavukkarasu C, Gunasekaran P, Nalini Ramamurthy, Sakthisekaran D: In vitro studies on the selective cytotoxic effect of crocetin and quercetin. Fitoterapia 71: 395–399, 2000

    Article  Google Scholar 

  6. Abdullaev FI: Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus,L). Exptl Biol Med 227: 20–5, 2002

    CAS  Google Scholar 

  7. Chang VC, Lin YL, Lee MJ, Show SJ, Wang CJ: Inhibitory effect of crocetin on benzo(a)pyrece genotoxicity and neoplastic transformation in C3H1OT1/2 cells. Anticancer Res 765: 3603–3608, 1996

    Google Scholar 

  8. Nair SC, Pannikar B, Pannikar KR: Antitumour activity of saffron (Crocus sativus). Cancer Lett 57: 109–14, 1991

    Article  PubMed  CAS  Google Scholar 

  9. Salomi MJ, Nair SC, Panikkar PR: Cytotoxicity and nonmutagenicity of Nigela sativa and saffron(Crocus sativus) in vitro. Proc Ker Congr 5: 244, 1991

    Google Scholar 

  10. Tarantilis PA, Tsoupras G, Polissiou M: Determination of saffron(Crocus sativus, L) components in crude plant extract using HPLC-U V Visible photodiode-array detection-mass spectrometry. J Chromatography 699: 107–18, 1995

    Article  CAS  Google Scholar 

  11. Daly ES: Protective effect of cystein and vitamin A, Crocus sativus and Nigela sativa extracts on cysplatin induced toxicity inrats. J Pharm Belg 53: 93–5, 1998

    Google Scholar 

  12. Guyton KZ, Kensler TW: Oxidative mechanisms in carcinogenesis. Brit Med Bull 49: 523–544, 1993

    PubMed  CAS  Google Scholar 

  13. Cross CE, Halliwell B, Borish ET: Oxygen radicals and human disease proceedings of a conference). Ann Intern Med 107: 526–545, 1987

    PubMed  CAS  Google Scholar 

  14. Kidd PM: Natural antioxidants—first line of defense. In: Kidd PM, Huber W. Living with the AIDS Virus: A Strategy for Long-Term Survival. Albany, California: PMK Biomedical-Nutritional Consulting 115–142, 1991

    Google Scholar 

  15. Stephen S, Pramod Upadhaya, Mingyao Wang, Robin L, Bliss, Edward J Mcintee and Patrick MJ Kenny: Inhibition of lung tumorigenesis in A/J mice by N-acetyl-S-(N-2-phenethylthiocarbamoyl)–L-cysteine and myoinositol, individually and in combination.Carcinogenesis 29(9): 1455–1461, 2002

    Google Scholar 

  16. Dodge JT, Mitchell C, Hanahan DJ: The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100: 119–30, 1963

    Article  PubMed  CAS  Google Scholar 

  17. Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem 95: 351–358, 1979

    Article  PubMed  CAS  Google Scholar 

  18. Habig WH, Pabst MJ, Jacoby WB: Glutathione-Stransferase : The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–39, 1974

    PubMed  CAS  Google Scholar 

  19. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization oferythrocyte glutathione peroxidase. J Lab Clin Med 70: 158–169, 1967

    PubMed  CAS  Google Scholar 

  20. Luck H: A spectrophotometric method for the estimation of catalase: In Bergmeyer, H.V. (ed) Methods of enzymatic analysis, Acad. Press, New York, pp. 886–888, 1963

    Google Scholar 

  21. Marklund S,Marklund G: Involvement of the superoxide anion radical in the auto oxidationof pyrogallol and a convenient assay for superoxide dismutase. Europ J Biochem 47: 469–474, 1974

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin's phenol reagent. J. Biol. Chem 193: 265–276, 1951

    PubMed  CAS  Google Scholar 

  23. Mildred K, Richerd L, Joseph G, Alexander W,Conney A: Activation and inhibition of Benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally accruing flavonoids. Cancer Res 41: 67–72, 1981

    Google Scholar 

  24. Orlowski K,Meister A: Isolation of γ-glutamyl transpeptidase from hog kidney. J. Biol. Chem 240: 338–347, 1965

    PubMed  CAS  Google Scholar 

  25. Rosalki,Rao, Serum γ glutamyl transpeptidase activity in alcoholism: Clin Chim Acta 39: 41–47, 1972

    Article  PubMed  CAS  Google Scholar 

  26. Luly P, Barnabei O,Tria E: Hormonal control in vitro of plasma membrane bound Na+/K+ ATPase of rat liver. Biochem Biophys Acta 282: 447–452, 1972

    PubMed  CAS  Google Scholar 

  27. King J: In: Practical Clinical Enzymology. D. van. Nostrand Co., London, 83–93, 1965

    Google Scholar 

  28. Staal GEJ, Visser J,Veeger C: Purification and properties of glutathione reductase of human erythrocytes. Biochim Biophys Acta 185: 39–48, 1969

    PubMed  CAS  Google Scholar 

  29. Moron MS, DePierre JW,Manerwik KB: Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582: 67–68, 1979

    PubMed  CAS  Google Scholar 

  30. Luna LG: Manual of Histological staining. Methods of Armed forces. Institute of Pathology, London, pp.1–31, 1966

    Google Scholar 

  31. Unnikrishnan MC,Kuttan R: Tumor reducing and anticarcinogenic activity of selected spices. Cancer Lett 51: 85, 1990

    Article  PubMed  CAS  Google Scholar 

  32. Williams GW: Modulation of chemical carcinogenesis by xenobiotics. Fund Appl Toxicol 4: 325–44, 1984

    Article  CAS  Google Scholar 

  33. Wattenberg LW: Chemoprevention of cancer. Cancer Res 45: 1–8, 1985

    Article  PubMed  CAS  Google Scholar 

  34. Boone CW, Kelloff GJ, Malone WE: Identification of cancer chemotherapy agents and their evaluation in animal models and human clinical trials: A review. Cancer Res 50: 2–9, 1990

    PubMed  CAS  Google Scholar 

  35. Bauer G,Wendel A: The activity of the peroxidemetabolising system in human colon carcinoma. Cancer Res Clin Oncol 97: 267–73, 1980

    Article  Google Scholar 

  36. Sikkim Jun H, Kwack S, Lee BM: Lipid peroxidation, antioxidant enzymes and Benzo(a)pyrenequinones in the blood of rats treated with benzo(a)pyrene. Chem Biol Ineract 127: 139–50, 2000

    Article  Google Scholar 

  37. Tessitore L, Costelli P,Baccino MF: Pharmacological interference with tissue hypercatabolism in tumour-bearing rats. Biochem J 299: 71–78, 1994

    PubMed  CAS  Google Scholar 

  38. Pain VM, Randall DP,Garlick PJ: Protein synthesis in liver and skeletal muscle of mice bearing ascites tumour. Cancer Res 44: 1054–1057, 1984

    PubMed  CAS  Google Scholar 

  39. Eric Yarnell ND: Carotenoids Continuing Education Module Natural Healing Track, 1–8, 1999

  40. Yay TM: Mutagenecity and cytotoxicity of malonaldehyde in mammalian cells. Mech Ageing Dev 11: 137–44, 1979

    Article  Google Scholar 

  41. Apaja M: Evaluation of toxicity and carcinogenity of malonaldehyde. An experimental study in swiss mice. Thesis Acta Univ Ouluensis, Ser D 55, 1980

  42. Basu AK,Marnett JL: Uniquivocal demonstration that malonaldehyde is a mutagen. Carcinogenesis 4: 331–3, 1983

    PubMed  CAS  Google Scholar 

  43. Van Popper, G: Carotenoids and Cancer: an update with emphasis on human intervention studies. Eur J Cancer 294: 1335–1344, 1993

    Google Scholar 

  44. Wood JL: In Metabolic Conjugation and Metabolic hydrolysis (Fishman, W.H. ed.,) AcademicPress New York, 2, pp. 261–299, 1970

    Google Scholar 

  45. Kraemer KH, Di Giovanna J, Moshell N: Prevention of skin cancer in xeroderma pigmentosum. N Engl J Med 318: 1633–1637, 1988

    Article  PubMed  CAS  Google Scholar 

  46. Sunde RA,Hoekstra WG: Structure, synthesis, and function of Glutathione peroeidase. NutrRev 8: 265–273, 1980

    Google Scholar 

  47. Singh I: Mammalian peroxisomes: metabolism of oxygen and reactive oxygen species. Ann N Y Acad Sci 804: 612–627, 1996

    PubMed  CAS  Google Scholar 

  48. Moser HW, Moser AB: Peroxisomal disorders: overview. Ann N Y Acad Sci 804: 427–441, 1996

    PubMed  CAS  Google Scholar 

  49. Prince Vijeya Singh J, Selvendiran K, Mumtaz Banu S, Padmavathi R,Sakthisekaran D: Protective role of Apigenin on the status of lipid peroxidation and antioxidant defense against hepatpcarcinogenesis in Wister albino rats. Phytomedicine 11: 309–314, 2004

    Article  PubMed  Google Scholar 

  50. Ilan Y, Rabani J: Superoxide dismutase activity of an iron porphyrin. Inorg. Nuclear Chem Lett 17, 93–96, 1981

    Article  CAS  Google Scholar 

  51. Perego P, Gatti L, Carenini N, Dal Bo L, Zunino F: Apoptosis induced by extra cellular glutathione is mediated by H2O2 production and DNA damage. Int JCancer 87: 343–348, 2000

    Article  PubMed  CAS  Google Scholar 

  52. Mikhail F, Denissenko K, Annie P, Moon-shong T, Gerd PP: Preferential formation of benzo(a)pyrene adducts at lung cancer mutational hotspots in p. 53. Science 274: 430– 432, 1996

    Article  Google Scholar 

  53. Stefanini, M: Enzymes, isoenzymes and enzyme variants in the diagnosis of cancer. Cancer55: 1931–1936, 1985

    Article  PubMed  CAS  Google Scholar 

  54. Yildrim Z, Hasanoglu C, Omer Okyol HJ, Gokirmakan S, Koksal N: Serum adenosine deaminaseactivities in LC and mesothelioma Clin Biochem 32: 283–285, 1999

    Article  Google Scholar 

  55. Valentich AM, Moris B: Effects of essential fatty acid deficiency on GGT activity of ratpancreas. J Nutr Biochem 3: 67–70, 1992

    Article  CAS  Google Scholar 

  56. Vanishree AJ, Shyamaladevi CS: Effect of therapeutic strategy estimatedby N-acetyl cysteine and Vit C on the activities of tumor marker enzymes in vitro Ind J Pharmacol 31: 275–278, 1998

    Google Scholar 

  57. Lippert M, Papadopoulos N, Javadpour NR: Role of lactate dehydrogenase isoenzymes in testicular cancer. Urology 18: 50–53, 1981

    Article  PubMed  CAS  Google Scholar 

  58. Mirmomeni MH, Suzanger M, Wise A, Messripour M, Emami H: Biochemical studies during AFB,induced liver damage in rats fed different levels of dietary protein. Int J Cancer 24: 471–476, 1979

    PubMed  CAS  Google Scholar 

  59. Engan T, Hannisdal E: Blood analyses as prognostic factors in primary lung cancer. Acta Oncol 29: 151–154, 1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanapal Sakthisekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magesh, V., Singh, J.P.V., Selvendiran, K. et al. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem 287, 127–135 (2006). https://doi.org/10.1007/s11010-005-9088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9088-0

Keywords

Navigation