Skip to main content

Nucleic Acid Amplification Strategies for Biosensing, Bioimaging, and Biomedicine

  • Chapter
  • First Online:
Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine

Abstract

Nucleic acid amplification methods are nucleic acid-assistant signal amplification strategies, which have been widely studied and applied for fundamental laboratory research, pharmacogenomics, gene diagnosis , and protein detection for many kinds of infectious diseases or cancers. Up to now, smart design and efficient applications of various nucleic acid molecule-based recycling amplification techniques have emerged as most promising tools, providing greatly enhanced sensitivity and selectivity for the targets in complicated biological samples, including blood, urine, saliva, tissues, and even living cells . Understanding the principles, characteristics, and dynamics of these amplification strategies is of great importance to their applications and research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andras SC, Power JB, Cocking EC (2001) Strategies for signal amplification in nucleic acid detection. Mol Biotechnol 1:29–44

    Article  Google Scholar 

  • Banér J, Nilsson M, Mendel-Hartvig M et al (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  Google Scholar 

  • Barany F (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci U S A 88:189–193

    Article  CAS  Google Scholar 

  • Bi S, Yue S, Zhang SS (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46:4281–4298

    Article  CAS  Google Scholar 

  • Blanco L, Bernad A, Lázaro JM et al (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940

    CAS  PubMed  Google Scholar 

  • Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Bio 4:223–229

    Article  Google Scholar 

  • Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem Bio 2:655–660

    Article  CAS  Google Scholar 

  • Cao W (2004) Recent developments in ligase-mediated amplification and detection. Trends Biotechnol 1:38–44

    Article  Google Scholar 

  • Chow WHA, McCloskey C, Tong YH et al (2008) Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn 10:452–458

    Article  CAS  Google Scholar 

  • Davis JD, Riley PK, Peters CW et al (1998) A comparison of ligase chain reaction to polymerase chain reaction in the detection of Chlamydia trachomatis endocervical infections. Infect Dis Obstet Gynecol 2:257–260

    Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252:1643–1651

    Article  CAS  Google Scholar 

  • Fire A, Xu SQ (1995) Biological sciences rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92:4641–4645

    Article  CAS  Google Scholar 

  • Gibbs RA (1991) Polymerase chain reaction techniques. Curr Opin Biotechnol 2:69–75

    Article  CAS  Google Scholar 

  • Goldmeyer J, Kong HM, Tang W (2007) Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn 5:9639–9644

    Google Scholar 

  • Gong L, Zhao Z, Lv YF et al (2015) DNAzyme-based biosensors and nanodevices. Chem Commun 51:979–995

    Article  CAS  Google Scholar 

  • Guo Q, Yang X, Wang K, Tan W et al (2009) Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res 37:e20

    Article  Google Scholar 

  • Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  Google Scholar 

  • Mahalanabis M, Do J, ALmuayad H (2010) An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices 12:353–359

    Article  CAS  Google Scholar 

  • Marshall RL, Laffler TG, Cerney MB et al (1994) Detection of HCV RNA by the asymmetric gap ligase chain reaction. PCR Methods Appl 2:80–84

    Article  Google Scholar 

  • Monis PT, Giglio S (2006) Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol 1:2–12

    Article  Google Scholar 

  • Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15:62–69

    Article  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63

    Article  CAS  Google Scholar 

  • Ramalingam N, San TC, Kai TJ et al (2009) Microfluidic devices harboring unsealed reactors for real-time isothermal helicase-dependent amplification. Microfluid Nanofluidics 7:325–336

    Article  CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F et al (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  Google Scholar 

  • Shen W, Deng H, Gao Z (2012) Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA. J Am Chem Soc 36:14678–14681

    Article  Google Scholar 

  • Shin GW, Chung B, Jung GY (2014) Multiplex ligase-based genotyping methods combined with CE. Electrophoresis 7:1004–1016

    Article  Google Scholar 

  • Srinivas N, Ouldridge TE, Šulc P et al (2013) On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res 44:10641–10658

    Article  CAS  Google Scholar 

  • Tomita N, Mori Y, Kanda H et al (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882

    Article  CAS  Google Scholar 

  • Tong YH, Lemieux B, Kong HM (2011) Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection. BMC Biotechnol 11:50

    Article  CAS  Google Scholar 

  • Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800

    Article  CAS  Google Scholar 

  • Walker GT, Little MC, Nadeau JG et al (1992a) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A 89:392–396

    Article  CAS  Google Scholar 

  • Walker GT, Fraiser MS, Schram JL et al (1992b) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696

    Article  CAS  Google Scholar 

  • Willner I, Shlyahovsky B, Zayats M et al (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165

    Article  CAS  Google Scholar 

  • Wu Z, Zhen Z, Jiang JH (2009) Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J Am Chem Soc 131:12325–12332

    Article  CAS  Google Scholar 

  • Yin P, Choi HM, Calvert CR et al (2008) Programming bio-molecular self-assembly pathways. Nature 451:318–322

    Article  CAS  Google Scholar 

  • Zhang DY, Winfree E (2009) Control of DNA strand dis-placement kinetics using toehold exchange. J Am Chem Soc 131:17303–17314

    Article  CAS  Google Scholar 

  • Zhang DY, Turberfield AJ, Yurke B et al (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318:1121–1125

    Article  CAS  Google Scholar 

  • Zhang Y, Park S, Liu K et al (2011) A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab Chip 11:398–406

    Article  CAS  Google Scholar 

  • Zhang X, Lowe SB, Gooding JJ (2014) Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron 61:491–499

    Article  CAS  Google Scholar 

  • Zhao YX, Chen F, Li Q et al (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  CAS  Google Scholar 

  • Zhou H, Zhang YY, Liu J et al (2013) Efficient quenching of electrochemiluminescence from K-doped graphene-CdS: Eu NCs by G-quadruplex-hemin and target recycling-assisted amplification for ultrasensitive DNA biosensing. Chem Commun 49:2246–2248

    Article  CAS  Google Scholar 

  • Zhou H, Liu J, Xu JJ et al (2018) Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 47:1996–2019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, H. (2019). Nucleic Acid Amplification Strategies for Biosensing, Bioimaging, and Biomedicine. In: Zhang, S., Bi, S., Song, X. (eds) Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-7044-1_1

Download citation

Publish with us

Policies and ethics