Skip to main content

In-silico Approach to Target Cancer Cell DNA Repair Pathway

  • Chapter
  • First Online:
Phytochemistry: An in-silico and in-vitro Update

Abstract

DNA repair pathway system involves a set of proteins which function to inverse the DNA damage caused by insults or other factors like replication error and restore normal functioning of the cell. DNA damage by genotoxic agents and its repair is a double-edged sword which is responsible for diseases but currently being exploited for therapeutic purpose. Cancer cells resist therapy due to efficient DNA repair. Exploring proteins involved in the process as well as chromatin remodeling is useful for targeting cancer cells. Scientists have successfully demonstrated PArP inhibitors targeting double strand DNA breaks (due to homologous recombination in BRCA1 and BRCA2 defective tumors) enhance response to therapy. Thus, DNA repair deficiency potentiates anti-cancer therapy and screening of inhibitors against proteins like p53 could help enhance the tumoricidal effect. Phytochemicals have been reported as chemo and radio sensitizers and study of their inhibitory effects against DNA repair pathway proteins could be promising for cancer therapy. In silico screening and docking of such phytochemicals against the DNA repair proteins such as TP53, ATM, MGMT, XRCC1, PCNA and BRCA1/2 genes is a swift method for identifying potent oncolytic compounds. Glabrin and glycyrrhetinic acid from Licorice have been screened as effective inhibitors against BRCA1 gene alongside a compound cimigenol from Black Cohosh. Soy derived isoflavone genistein has shown reactivation of MGMT genes via DNA hypermethylation reversal. In addition to the previously reported studies, we have also implemented the strategy on a target protein (PARP1) with phytochemical databases of interest. The future of this approach seems bright for oncolytic therapy targeting DNA repair pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbotts R, Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev. 2010;36(5):425–35.

    Article  CAS  PubMed  Google Scholar 

  • Afnan Q, Adil MD, Nissar-Ul A, Rafiq AR, Amir HF, Kaiser P, et al. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts. Phytomedicine. 2012;19:658–64.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach BJ, Reynolds SJ, Lamorde M, Merry C, Kukunda-Byobona C, Ocama P, Semeere AS, Ndyanabo A, Boaz I, Kiggundu V, Nalugoda F. Traditional herbal medicine use associated with liver fibrosis in rural Rakai, Uganda. PLoS One. 2012;7(11):e41737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat KH, Tuszynski JA. Nucleotide excision repair inhibitors: still a long way to go. In: Chen C, editor. New research directions in DNA repair. Arizona: InTech; 2013. p. 559–76.

    Google Scholar 

  • Basharat Z, Zaib S, Yasmin A, Tong Y. Drug target identification and virtual screening in pursuit of phytochemical intervention of Mycobacterium chelonae. bioRxiv. 2018;315408.

    Google Scholar 

  • Batey MA, Zhao Y, Kyle S, Richardson C, Slade A, Martin NM, et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo inp53 functional and dysfunctional models of human cancer. Mol Cancer Ther. 2013;12:959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7(1):20–37.

    Article  CAS  PubMed  Google Scholar 

  • Budke B, Logan HL, Kalin JH. RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res. 2012;40(15):7347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso AA, Jiang Y, Luo M, et al. APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1-STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival. PLoS One. 2012;7(10):e47462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA doublestrand break repair pathway choice. Mol Cell. 2012;47:497–510.

    Article  CAS  PubMed  Google Scholar 

  • Chau W, Ross R, Li JY, Yong TY, Klebe S, Barbara JA. Nephropathy associated with use of a Chinese herbal product containing aristolochic acid. Med J Aust. 2011;194:367–8.

    Article  PubMed  Google Scholar 

  • Chen CH, Dickman KG, Moriya M, Zavadil J, Sidorenko VS, Edwards KL, Gnatenko DV, Wu L, Turesky RJ, Wu XR, Pu YS. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci. 2012;109(21):8241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MB, Zhang Y, Wei MX, et al. Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells. Cell Signal. 2013;25:1993–2002.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Huan X, Liu Q, Wang Y, He Q, Tan C, Chen Y, Ding J, Xu Y, Miao Z, Yang C. Design and synthesis of 2-(4, 5, 6, 7-tetrahydrothienopyridin-2-yl)-benzoimidazole carboxamides as novel orally efficacious Poly (ADP-ribose) polymerase (PARP) inhibitors. Eur J Med Chem. 2018;145:389–403.

    Article  CAS  PubMed  Google Scholar 

  • Cheng YT, Yang CC, Shyur LF. Phytomedicine – modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol Res. 2016;114:128–43.

    Article  PubMed  CAS  Google Scholar 

  • Chilampalli C, Guillermo R, Zhang X, Kaushik RS, Young A, Zeman D, et al. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer. 2011;11:456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirnomas D, Taniguchi T, de la Vega M, Vaidya AP, Vasserman M, Hartman AR, Kennedy R, Foster R, Mahoney J, Seiden MV, D’Andrea AD. Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol Cancer Ther. 2006;5(4):952–61.

    Article  CAS  PubMed  Google Scholar 

  • Choi KS, Kundu JK, Chun KS, Na HK, Surh YJ. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets. Arch Biochem Biophys. 2014;559:38–45.

    Article  CAS  PubMed  Google Scholar 

  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deriano L, Roth DB. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433–55.

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani KM, Mahesh VB, Brann DW. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J Neurochem. 2007;102(2):522–38.

    Article  CAS  PubMed  Google Scholar 

  • Dietlein F, Thelen L, Reinhardt HC. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet. 2014;30(8):326–39.

    Article  CAS  PubMed  Google Scholar 

  • Ekor. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Desouky SK, Gamal-Eldeen AM. Cytotoxic and anti-inflammatory activities of some constituents from the floral buds of Syringa patula. Pharm Biol. 2009;47(9):872–7.

    Article  CAS  Google Scholar 

  • Ernst E. Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci. 2002;23:136–9.

    Article  CAS  PubMed  Google Scholar 

  • Fan CH, Liu WL, Cao H, Wen C, Chen L, Jiang G. O(6)-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis. 2013;4:876.

    Article  CAS  Google Scholar 

  • Fishel R. Mismatch repair. J Biol Chem. 2015;290(44):26395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’connor MJ, Ashworth A. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  • Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids. 2010;2010:1–6.

    Article  CAS  Google Scholar 

  • Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell. 2005;17(3):463–70.

    Article  CAS  PubMed  Google Scholar 

  • George E, Kim H, Krepler C, Wenz B, Makvandi M, Tanyi JL, Brown E, Zhang R, Brafford P, Jean S, Mach RH. A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers. JCI Insight. 2017;2(1):e89760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giglia-Mari G, Zotter A, Vermeulen W. DNA damage response. Cold Spring Harb Perspect Biol. 2011;3:000745.

    Article  CAS  Google Scholar 

  • Hass CS, Lam K. Repair-specific functions of replication protein A. J Biol Chem. 2012;287(6):3908–18.

    Article  CAS  PubMed  Google Scholar 

  • Hong YT, Fu LS, Chung LH, Hung SC, Huang YT, Chi CS. Fanconi’s syndrome, interstitial fibrosis and renal failure by aristolochic acid in Chinese herbs. Pediatr Nephrol. 2006;21:577–9.

    Article  PubMed  Google Scholar 

  • Hseu YC, Chou CW, Senthil-Kumar KJ, Fu KT, Wang HM, Hsu LS, et al. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the up regulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol. 2012;50:1245–55.

    Article  CAS  PubMed  Google Scholar 

  • Izzard RA, Jackson SP, Smith GC. Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res. 1999;59(11):2581–6.

    CAS  PubMed  Google Scholar 

  • John TA, Okoli CC, Ekor M. Some phytochemical, safety, antimicrobial and haematological studies of super b and seven keys to power blood purifier herbal tonics. Nig J Med Res. 1997;1:37–43.

    Google Scholar 

  • Kang NJ, Jung SK, Lee KW, Lee HJ. Myricetin is a potent chemo preventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci. 2011;1229:124–32.

    Article  CAS  PubMed  Google Scholar 

  • Kelley MR, Fishel ML. DNA repair and cancer therapeutics. In: Tan D, Lynch HT, editors. Principles of molecular diagnostics and personalized cancer medicine. Pennsylvania: Lippincott Williams & Wilkins; 2013. p. 566–79.

    Google Scholar 

  • Kelley MR, Logsdon D, Fishel ML. Targeting DNA repair pathways for cancer treatment: what’s new? Future Oncol. 2014;10(7):1215–37.

    Article  CAS  PubMed  Google Scholar 

  • Ko JC, Su YJ, Lin ST, Jhan JY, Ciou SC, Cheng CM, Chiu YF, Kuo YH, Tsai MS, Lin YW. Emodin enhances cisplatin induced cytotoxicity via down-regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer. 2010;69:155–64.

    Article  PubMed  Google Scholar 

  • Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40(13):5795–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krokan HE, Bjoras M. Base excision repair. Cold Spring Harb Perspect Biol. 2013;5:a012583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krokan HE, Drablos F, Slupphaug G. Uracil in DNA–occurrence, consequences and repair. Oncogene. 2002;21(58):8935–48.

    Article  CAS  PubMed  Google Scholar 

  • Lagunin AA, Druzhilovsky DS, Rudik AV, Filimonov DA, Gawande D, Suresh K, Goel R, Poroikov VV. Computer evaluation of hidden potential of phytochemicals of medicinal plants of the traditional Indian ayurvedic medicine. Biomeditsinskaia Khimiia. 2015;61(2):286–97.

    Article  CAS  PubMed  Google Scholar 

  • Lee GT, Cha HJ, Lee KS, Lee KK, Hong JT, Ahn KJ, et al. Arctiin induces an UVB protective effect in human dermal fibroblast cells through microRNA expression changes. Int J Mol Med. 2014;33:640–8.

    Article  CAS  PubMed  Google Scholar 

  • Leone S, Cornetta T, Basso E, Cozzi R. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett. 2010;295(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  • Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol. 2010;80(12):1771–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Lin C, Li Y. Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/beta-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal. 2014;26:1303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SA, Lord CJ, Ashworth A. Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res. 2010;16(21):5107–13.

    Article  CAS  PubMed  Google Scholar 

  • McClendon AK, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res. 2007;623(1–2):83–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollakhalili Meybodi N, Mortazavian AM, Monfared AB, Sohrabvandi S, Meybodi FA. Phytochemicals in Cancer prevention: a review of the evidence. Iranian J Cancer Preven. 2017;10(1):e7219.

    Google Scholar 

  • Mouw KW. DNA repair pathway alterations in bladder cancer. Cancer. 2017;9:28.

    Article  CAS  Google Scholar 

  • Mukherjee S, Kumar G, Patnaik R. Identification of potential inhibitors of PARP-1, a regulator of caspase-independent cell death pathway, from Withania somnifera phytochemicals for combating neurotoxicity: a structure-based in-silico study. J Theor Comput Chem. 2017;16(07):1750062.

    Article  CAS  Google Scholar 

  • Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res. 2011;39:5813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazaruk JOLANTA, Gudej J. Apigenin glycosides from the flowers of Bellis perennis L. Acta Pol Pharm. 2000;57(2):129–30.

    CAS  PubMed  Google Scholar 

  • Ntie-Kang F, Telukunta KK, Döring K, Simoben CV, Moumbock A, F A, Malange YI, Njume LE, Yong JN, Sippl W, Günther S. NANPDB: a resource for natural products from northern African sources. J Nat Prod. 2017;80(7):2067–76.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.

    Article  PubMed  CAS  Google Scholar 

  • Oche GA, Eniafe Gabriel O, Olumide Iyang K, Olanrewaju John A, Omotuyi Olaposi I. Lupeol from Lycopersicon esculentum as a potential antagonist of the poly (ADP-ribose) polymerase-1 (PARP-1) for cancer chemotherapy: an in silico Study. Int J Sci Eng Res. 2018;9(2), 534–552.

    Google Scholar 

  • Orlikova B, Diederich M. Power from the garden: plant compounds as inhibitors of the hallmarks of cancer. Curr Med Chem. 2012;19:2061–87.

    Article  CAS  PubMed  Google Scholar 

  • Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F. BMC Genomics. 2005;6:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med. 2005;2(4):465–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhiga T, Agilan B, Muzaffer U, Karthikeyan R, Kanimozhi G, Paul VI, et al. Phytochemicals as modulators of ultraviolet-b radiation induced cellular and molecular events: a review. J Radiat Cancer Res. 2016;7:2–12.

    Article  Google Scholar 

  • Rafi MM, Vastano BC, Zhu N, Ho CT, Ghai G, Rosen RT, Gallo MA, DiPaola RS. Novel polyphenol molecule isolated from licorice root (Glycrrhiza glabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. J Agric Food Chem. 2002;50(4):677–84.

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Ho E, Williams DE, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics. 2011;3(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell JA, Pérez-Jiménez J, Neveu V, Medina-Ramon A, M’Hiri N, Garcia Lobato P, Manach C, Knox K, Eisner R, Wishart D, Scalbert A. Phenol-explorer 3.0: a major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database. 2013;2013:bat070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy M, Kunnumakkara AB, Mukherjee A, Sarkar R, Mukherjee S, Biswas J. Repair activity impaired by Arsenic: recovery by phytochemicals. Int J Curr Microbiol App Sci. 2015;4(3):578–87.

    CAS  Google Scholar 

  • Ruíz G, Valencia-González HA, León-Galicia I, García-Villa E, García-Carrancá A, Gariglio P. Inhibition of RAD51 by siRNA and resveratrol sensitizes cancer stem cells derived from HeLa cell cultures to apoptosis. Stem Cells Int. 2018;2018:1–11.

    Article  CAS  Google Scholar 

  • Saha A, Blando J, Silver E, et al. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-kappaB signaling. Cancer Prev Res (Phila). 2014;7:627–38.

    Article  CAS  Google Scholar 

  • Siddique YH, Ara G, Beg T, et al. Assessment of cell viability, lipid peroxidation and quantification of DNA fragmentation after the treatment of anticancerous drug mitomycin C and curcumin in cultured human blood lymphocytes. Exp Toxicol Pathol. 2010;62:503–8.

    Article  CAS  PubMed  Google Scholar 

  • Sishc BJ, Davis AJ. The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancer. 2017;9:81.

    Article  CAS  Google Scholar 

  • Sonnenblick A, de Azambuja E, Azim HA Jr, Piccart M. An update on PARP inhibitors – moving to the adjuvant setting. Nat Rev Clin Oncol. 2015;12(1):27.

    Article  CAS  PubMed  Google Scholar 

  • Sordet O, Redon CE, Guirouilh-Barbat J, Smith S, Solier S, Douarre C, Conti C, Nakamura AJ, Das BB, Nicolas E, et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 2009;10:887–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal. 2009;11:601–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tell G, Wilson DM. Targeting DNA repair proteins for cancer treatment. Cellul Mol Life Sci. 2010;67(21):3569–72.

    Article  CAS  PubMed  Google Scholar 

  • Tuorkey MJ. Cancer therapy with phytochemicals: present and future perspectives. Biomed Environ Sci. 2015;28(11):808–19.

    Article  PubMed  Google Scholar 

  • Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science. 2014;343:1470–5.

    Article  CAS  PubMed  Google Scholar 

  • Vermeij WP, Hoeijmakers JH, Pothof J. Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol Toxicol. 2016;56:427–45.

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Lin PY, Chiu YC, Huang JS, Kuo YT, Wu JC, et al. Curcumin-mediated HDAC inhibition suppresses the DNA damage response and contributes to increased DNA damage sensitivity. PLoS One. 2015;10(7):e0134110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME. MGMT promoter methylation in malignant gliomas: ready for personalized medicine. Nat Rev Neurosci. 2010;6:39–51.

    CAS  Google Scholar 

  • Wölfle U, Heinemann A, Esser PR, Haarhaus B, Martin SF, Schempp CM. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes. Rejuvenation Res. 2012;15:466–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan H, Toczylowski T, McCane J, Chen C, Liao S. Replication protein A promotes 5′→ 3′ end processing during homology-dependent DNA double-strand break repair. J Cell Biol. 2011;192(2):251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SS, Chu P, Lin YF, Chen A, Lin SH. Aristolochic acid-induced Fanconi’s syndrome and nephropathy presenting as hypokalemic paralysis. Am J Kidney Dis. 2002;39:E14.

    Article  PubMed  Google Scholar 

  • Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti Cancer Agents Med Chem. 2012;12(10):1264–80.

    Article  CAS  Google Scholar 

  • Yin SY, Yang NS, Lin TJ. Phytochemicals approach for developing cancer immunotherapeutics. Front Pharmacol. 2017;8:386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yonekura S, Nakamura N, Yonei S, Zhang-Akiyama QM. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res. 2009;50(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Guan J, Qin Y, Ren P, Zhang Z, Lv J, Sun S, Zhang C, Mao W. Curcumin sensitizes lymphoma cells to DNA damage agents through regulating Rad51-dependent homologous recombination. Biomed Pharmacother. 2018;97:115–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Yasmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yasmin, A., Basharat, Z., Safdar, N. (2019). In-silico Approach to Target Cancer Cell DNA Repair Pathway. In: Kumar, S., Egbuna, C. (eds) Phytochemistry: An in-silico and in-vitro Update. Springer, Singapore. https://doi.org/10.1007/978-981-13-6920-9_20

Download citation

Publish with us

Policies and ethics