Skip to main content

Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes

  • Chapter
  • First Online:
Arsenic Pollution Control in Nonferrous Metallurgy

Abstract

The current treatments of arsenic-bearing solid wastes originated from nonferrous metals smelter, taking the wastewater treatment sludge and arsenic-bearing anode slime for example, are mainly both solidification and secondary utilization. The stabilization, solidification and vitrification technologies are described, and most of the technologies have been commercialized by at least one non-ferrous metal smelter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh, T.S., Pant, K.K.: Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J. Hazard. Mater. 131(1–3), 29–36 (2006)

    Article  CAS  Google Scholar 

  2. Shaw, J.K., Fathordoobadi, S., Zelinski, B.J., Ela, W.P., Saez, A.E.: Stabilization of arsenic-bearing solid residuals in polymeric matrices. J. Hazard. Mater. 152(3), 1115–1121 (2008)

    Article  CAS  Google Scholar 

  3. Shi, M.Q., Liang, Y.J., Chai, L.Y., et al.: Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. J. Mol. Struct. 1081, 389–394 (2015)

    Article  CAS  Google Scholar 

  4. Ke, Y., Chai, L.Y., Min, X.B., et al.: Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Miner. Eng. 61, 105–112 (2014)

    Article  CAS  Google Scholar 

  5. Yang, Z.H., Liu, L., Chai, L.Y., et al.: Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ. Sci. Pollut. R. 22(16), 12624–12632 (2015)

    Article  CAS  Google Scholar 

  6. Paktunc, D., Bruggeman, K.: Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Appl. Geochem. 25(5), 674–683 (2010)

    Article  CAS  Google Scholar 

  7. Kundu, S., Gupta, A.K.: Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic. J. Hazard. Mater. 153(1–2), 434–443 (2008)

    Article  CAS  Google Scholar 

  8. Mendonca, A.A., Galvao, T.C.B., Lima, D.C., et al.: Stabilization of arsenic-bearing sludges using lime. J. Mater. Civil. Eng. 18(2), 135–139 (2006)

    Article  CAS  Google Scholar 

  9. Yoon, I.H., Moon, D.H., Kim, K.W., et al.: Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manag. 91(11), 2322–2328 (2010)

    Article  CAS  Google Scholar 

  10. Peng, B., Lei, J., Min, X., et al.: Physicochemical properties of arsenic-bearing lime-ferrate sludge and its leaching behaviors. Trans. Nonferrous Met. Soc. China 27, 1188–1198 (2017)

    Article  CAS  Google Scholar 

  11. Bothe, J.V., Brown, P.W.: Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 33(21), 3806–3811 (1999)

    Article  CAS  Google Scholar 

  12. Donahue, R., Hendry, M.J.: Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Appl. Geochem. 18(11), 1733–1750 (2003)

    Article  CAS  Google Scholar 

  13. Camacho, J., Wee, H.Y., Kramer, T.A., Autenrieth, R.: Arsenic stabilization on water treatment residuals by calcium addition. J. Hazard. Mater. 165(1–3), 599–603 (2009)

    Article  CAS  Google Scholar 

  14. Guo, X.J., Wang, K.P., He, M.C., et al.: Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. J. Environ. Sci. China. 26(7), 1549–1556 (2014)

    Article  CAS  Google Scholar 

  15. Baskan, M.B., Pala, A.: Determination of arsenic removal efficiency by ferric ions using response surface methodology. J. Hazard. Mater. 166(2–3), 796–801 (2009)

    Article  CAS  Google Scholar 

  16. Lei, J., Peng, B., Min, X., et al.: Modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges with a central composite design. J. Environ. Sci. Health 52(5), 449–458 (2017)

    Article  CAS  Google Scholar 

  17. Divsar, F., Habibzadeh, K., Shariati, S., Shahriarinour, M.: Aptamer conjugated silver nanoparticles for the colorimetric detection of arsenic ions using response surface methodology. Anal. Methods UK 7(11), 4568–4576 (2015)

    Article  CAS  Google Scholar 

  18. Kowalski, K.P., Søgaard, E.G.: Implementation of zero-valent iron (ZVI) into drinking water supply—role of the ZVI and biological processes. Chemosphere 117, 108–114 (2014)

    Article  CAS  Google Scholar 

  19. Wen, Z., Zhang, Y., Dai, C., et al.: Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions. Microporous Mesoporous Mater. 200, 235–244 (2014)

    CAS  Google Scholar 

  20. An, B., Zhao, D.: Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. J. Hazard. Mater. 211–212, 332–341 (2012)

    Article  CAS  Google Scholar 

  21. Liang, Y., Min, X., Chai, L., et al.: Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere 168, 1142–1151 (2017)

    Article  CAS  Google Scholar 

  22. Selena, M., Alessandro, C., Massimo, P., et al.: Remediation of heavy metals contaminated soils by ball milling. Chemosphere 67, 631–639 (2007)

    Article  CAS  Google Scholar 

  23. Kim, J.Y., Allen, P.D.: Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol. 37, 189–195 (2003)

    Article  CAS  Google Scholar 

  24. Lagno, F., Rocha, S.D., Chryssoulis, S., et al.: Scorodite encapsulation by controlled deposition of aluminum phosphate coatings. J. Hazard. Mater. 181, 526–534 (2010)

    Article  CAS  Google Scholar 

  25. Yang, H., McCormick, P.G.: Combustion reaction of zinc oxide with magnesium during mechanical milling. J. Solid State Chem. 107, 258–263 (1993)

    Article  CAS  Google Scholar 

  26. Zhang, D., Richmond, J.: Microstructural evolution during combustion reaction between CuO and Al induced by high energy ball milling. J. Mater. Sci. 34, 701–706 (1999)

    Article  Google Scholar 

  27. Laszlo, T.: Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 47, 355–414 (2002)

    Article  Google Scholar 

  28. Chai, L., Liang, Y., Ke, Y., et al.: Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives. Trans. Nonferrous Met. Soc. China 23, 1129–1138 (2013)

    Article  CAS  Google Scholar 

  29. Li, M., Sun, C., Gau, S., et al.: Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. J. Hazard. Mater. 174, 586–591 (2010)

    Article  CAS  Google Scholar 

  30. Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., et al.: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004)

    Article  CAS  Google Scholar 

  31. Sun, F., Kwadwo, A.O., Chen, Y., et al.: Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI. J. Hazard. Mater. 196, 311–317 (2011)

    Article  CAS  Google Scholar 

  32. Cyril, W.C., Naoto, M., Yoshinaga, N.: Ferrihydrite deposits in paddy races, Aso-Dani. Clay Sci. 8, 9–15 (1990)

    Google Scholar 

  33. Song, J., Jia, S., Yu, B., et al.: Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate. J. Hazard. Mater. 294, 70–79 (2015)

    Article  CAS  Google Scholar 

  34. Himemstra, T., Riemsdijk, W.H.V.: Surface structural adsorption modeling of competitive binding of oxyanions by metal(hydr)oxides. J. Colloid Interface Sci. 210, 182–193 (1999)

    Article  Google Scholar 

  35. Jia, Y., Xu, L., Fang, Z., et al.: Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 40, 3248–3253 (2006)

    Article  CAS  Google Scholar 

  36. Cui, H., Li, Q., Gao, S., et al.: Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 18, 1418–1427 (2012)

    Article  CAS  Google Scholar 

  37. Cornell, R.M., Giovanoli, R.: Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media. Clays Clay Miner. 35, 11–20 (1987)

    Article  CAS  Google Scholar 

  38. Ouvrard, S., Dedonato, P.H., Simonnot, M.O.: Natural manganese oxide: combined analytical approach for solid characterization and arsenic retention. Geochim. Cosmochim. Acta 69, 2715–2724 (2005)

    Article  CAS  Google Scholar 

  39. Rauret, G., Nchez, J., Sahuquillo, A., et al.: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1, 57–61 (1999)

    Article  CAS  Google Scholar 

  40. Xie, X., Min, X., Chai, L., et al.: Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation–flotation process. Environ. Sci. Pollut. Res. 20, 6050–6058 (2013)

    Article  CAS  Google Scholar 

  41. Ke, Y., Shen, C., Min, X.-B., et al.: Separation of Cu and As in Cu-As-containing filter cakes by Cu2 +-assisted acid leaching. Hydrometallurgy 172, 45–50 (2017)

    Article  CAS  Google Scholar 

  42. Shi, C., Meyer, C., Behnood, A.: Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 52, 1115–1120 (2008)

    Article  Google Scholar 

  43. Jing, C., Korfiatis, G.P., Meng, X.: Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement. Environ. Sci. Technol. 37, 5050–5056 (2003)

    Article  CAS  Google Scholar 

  44. Chai, L., Yue, M., Yang, J., et al.: Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater. J. Hazard. Mater. 320, 620–627 (2016)

    Article  CAS  Google Scholar 

  45. Choi, W.H., Lee, S.R., Park, J.Y.: Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag. 29, 1766–1771 (2009)

    Article  CAS  Google Scholar 

  46. Li, Y.C., Min, X.B., Chai, L.Y., et al.: Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J. Environ. Manag. 181, 756–761 (2016)

    Article  CAS  Google Scholar 

  47. Min, X.-B., Liao, Y.-P., Chai, L.-Y., et al.: Removal and stabilization of arsenic from anode slime by forming crystal scorodite. Trans. Nonferrous Met. Soc. 25, 1298–1306 (2015)

    Article  CAS  Google Scholar 

  48. Min, X., Li, Y., Ke, Y., et al.: Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci. Technol. 76(1), 192–200 (2017)

    Article  CAS  Google Scholar 

  49. Peng, B., Song, T., Wang, T., et al.: Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem. Eng. J. 299, 15–22 (2016)

    Article  CAS  Google Scholar 

  50. Zhao, Z., Song, Y., Min, X., et al.: XPS and FTIR studies of sodium arsenate vitrification by cullet. J. Non-Cryst. Solids 452, 238–244 (2016)

    Article  CAS  Google Scholar 

  51. Bose, P., Sharma, A.: Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Res. 4916–4926 (2002)

    Google Scholar 

  52. Desogus, P., Manca, P.P., Orrù, G., et al.: Stabilization–solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrate. Miner. Eng. 45, 47–54 (2013)

    Article  CAS  Google Scholar 

  53. Jaarsveld, J.G.S.V., Deventer, J.S.J.V., Lorenzeni, L.: The potential use of geopolymeric materials to immobilise toxic metals Part I. Theory and applications. Miner. Eng. 7, 659–669 (1997)

    Article  Google Scholar 

  54. Jaarsveld, J.G.S.V., Deventer, J.S.J.V., Lorenzeni, L.: The potential use of geopolymeric materials to immobilise toxic metals Part II. Material and leaching characteristics. Miner. Eng. 1, 75–91 (1999)

    Article  Google Scholar 

  55. Jang, A., Kim, I.S.: Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash. Miner. Eng. 14, 1659–1662 (2000)

    Article  Google Scholar 

  56. Singh, T.S., Pant, K.K.: Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater. 131, 29–36 (2006)

    Article  CAS  Google Scholar 

  57. Qian, G., Cao, Y., Chui, P., et al.: Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. J. Hazard. Mater. 129, 274–281 (2006)

    Article  CAS  Google Scholar 

  58. Liu, D.-G., Min, X.-B., Ke, Y., et al.: Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Environ. Sci. Pollut. Res. 25, 7600–7607 (2018)

    Article  CAS  Google Scholar 

  59. Kumar, S., Kumar, R., Bandopadhyay, A., et al.: Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem. Concr. Compos. 30, 679–685 (2008)

    Google Scholar 

  60. Horpibulsuk, S., Miura, N., Nagaraj, T.: Assessment of strength development in cement-admixed high water content clays with Abrams’ law as a basis. Geotechnique 53, 439–444 (2003)

    Article  Google Scholar 

  61. Seco, J.I., Fernández-Pereira, C., Vale, J.: A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicol. Environ. Saf. 56, 339–350 (2003)

    Article  CAS  Google Scholar 

  62. Coussy, S., Paktunc, D., Rose, J., et al.: Arsenic speciation in cemented paste backfills and synthetic calcium–silicate–hydrates. Miner. Eng. 39, 51–61 (2012)

    Article  CAS  Google Scholar 

  63. Phenrat, T., Marhaba, T.F., Rachakornkij, M.: A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge. J. Hazard. Mater. 118, 185–195 (2005)

    Article  CAS  Google Scholar 

  64. Stronach, S., Walker, N., Macphee, D., et al.: Reactions between cement and As (III) oxide: the system CaO·SiO2·As2O3·H2O at 25 °C. Waste Manag. 17, 9–13 (1997)

    Article  CAS  Google Scholar 

  65. Kumarathasan, P., McCarthy, G.J., Hassett, D.J., et al.: Oxyanion substituted ettringites: synthesis and characterization; and their potential role in immobilization of As, B, Cr, Se and V. MRS Online Proc. Library Arch. 178, 83 (1989)

    Google Scholar 

  66. Vandecasteele, C., Dutré, V., Geysen, D., et al.: Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manag. 22, 143–146 (2002)

    Article  CAS  Google Scholar 

  67. Dutré, V., Vandecasteele, C.: Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. J. Hazard. Mater. 40, 55–68 (1995)

    Article  Google Scholar 

  68. Qiao, X.C., Poon, C.S., Cheeseman, C.R.: Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. J. Hazard. Mater. 139, 238–243 (2007)

    Article  CAS  Google Scholar 

  69. Li, Y.-C., Min, X.-B., Chai, L.-Y., et al.: Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J. Environ. Manag. 181, 756–761 (2016)

    Article  CAS  Google Scholar 

  70. Boldyrev, V., Pavlov, S., Goldberg, E.: Interrelation between fine grinding and mechanical activation. Comminution 44(95), 181–185 (1996)

    Google Scholar 

  71. Wei, B., Zhang, Y., Bao, S.: Preparation of geopolymers from vanadium tailings by mechanical activation. Constr. Build. Mater. 145(Supplement C), 236–242 (2017)

    Google Scholar 

  72. Sulaymon, A.H., Faisal, A.A., Khaliefa, Q.M.: Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater. J. Hazard. Mater. 297, 160–72 (2015)

    Article  CAS  Google Scholar 

  73. Doudart de la Grée, G.C.H., Yu, Q.L., Brouwers, H.J.H.: Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars. Constr. Build. Mater. 143, 48–60 (2017)

    Google Scholar 

  74. Kang, S.-P., Kwon, S.-J.: Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar. Constr. Build. Mater. 133, 459–467 (2017)

    Google Scholar 

  75. Li, Y.-C., Min, X.-B., Ke, Y., et al.: Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J. Hazard. Mater. 344, 343–349 (2018)

    Article  CAS  Google Scholar 

  76. Minard, H., Garrault, S., Regnaud, L., et al.: Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem. Concr. Res. 37(10), 1418–1426 (2007)

    Article  CAS  Google Scholar 

  77. Pontikes, Y., Angelopoulos, G.N.: Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour. Conserv. Recycl. 73, 53–63 (2013)

    Article  Google Scholar 

  78. Coussy, S., Paktunc, D., Rose, J., et al.: Arsenic speciation in cemented paste backfills and synthetic calcium–silicate–hydrates. Miner. Eng. 39, 51–61 (2012)

    Google Scholar 

  79. Moon, D.H., Dermatas, D.: Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. J. Hazard. Mater. 141, 388–394 (2007)

    Article  CAS  Google Scholar 

  80. Phair, J.W., Van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 66, 121–143 (2002)

    Article  CAS  Google Scholar 

  81. Liu, X., Zhang, N.: Utilization of red mud in cement production: a review. Waste Manag. Res. 29, 1053–1063 (2011)

    Article  CAS  Google Scholar 

  82. Singh, M., Upadhayay, S.N., Prasad, P.M.: Preperation of iron rich cements using red mud. Cem. Concr. Res. 27, 1037–1046 (1997)

    Article  CAS  Google Scholar 

  83. Zhang, M., Yang, C., Zhao, M., et al.: Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes. J. Hazard. Mater. 321, 281–289 (2017)

    Google Scholar 

  84. Andini, S., Cioffi, R., Colangelo, F., et al.: Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag. 28, 416–423 (2008)

    Google Scholar 

  85. Goetz-Neunhoeffer, F., Neubauer, J., Schwesig, P.: Mineralogical characteristics of Ettringites synthesized from solutions and suspensions. Cem. Concr. Res. 36, 65–70 (2006)

    Google Scholar 

  86. Bhatnagar, A., Minocha, A.K.: Utilization of industrial waste for cadmium removal from water and immobilization in cement. Chem. Eng. J. 150, 145–151 (2009)

    Google Scholar 

  87. Choi, W.H., Lee, S.R., Park, J.Y.: Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag. 29(5), 1766–1771 (2009)

    Google Scholar 

  88. Miller, J., Akhter, H., Cartledge, F.K., et al.: Treatment of arsenic-contaminated soils. II: Treatability study and remediation. J. Environ. Eng. 126(11), 1004–1012 (2000)

    Google Scholar 

  89. Kuo, Y.M., Wang, J.W., Chao, H.R., et al.: Effect of cooling rate and basicity during vitrification of fly ash: Part 2. On the chemical stability and acid resistance of slags. J. Hazard. Mater. 152(2), 554–562 (2008)

    Google Scholar 

  90. Joseph, K., Kutty, K.G., Chandramohan, P., et al.: Studies on the synthesis and characterization of cesium-containing iron phosphate glasses. J. Nucl. Mater. 384(3), 262–267 (2009)

    Article  CAS  Google Scholar 

  91. Reis, S.T., Karabulut, M., Day, D.E.: Structural features and properties of lead-iron-phosphate nuclear wasteforms. J. Nucl. Mater. 304(2–3), 87–95 (2002)

    Article  CAS  Google Scholar 

  92. Chakraborty, S., Arora, A.K.: Temperature evolution of Raman spectrum of iron phosphate glass. Vib. Spectrosc. 61, 99–104 (2012)

    Article  CAS  Google Scholar 

  93. Bingham, P., Hand, R., Forder, S.: Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability. Mater. Res. Bull. 41(9), 1622–1630 (2006)

    Article  CAS  Google Scholar 

  94. Shi, M., Liang, Y., Chai, L., et al.: Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. J. Mol. Struct. 1081, 389–394 (2015)

    Article  CAS  Google Scholar 

  95. Krishna, S.B.M., Babu, A.R., Rajya Sree, C., et al.: Influence of molybdenum ions on the structure of ZnO–As2O3–Sb2O3 glass system by means of spectroscopic and dielectric studies. J. Non-Cryst. Solids 356, 1754–1761 (2010)

    Google Scholar 

  96. Leist, M., Casey, R.J., Caridi, D.: The management of arsenic wastes: problems and prospects. J. Hazard. Mater. 76, 125–138 (2000)

    Article  CAS  Google Scholar 

  97. Tang, Y., Chan, S.-W., Shih, K.: Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials. Waste Manag. 34, 1085–1091 (2014)

    Article  CAS  Google Scholar 

  98. Li, H., Yang, X., Xu, W., et al.: Application of dry composite electroplating sludge into preparation of cement-based decorative mortar as green pigment. J. Clean. Prod. 66, 101–106 (2014)

    Article  CAS  Google Scholar 

  99. Huang, R., Huang, K.-L., Lin, Z.-Y., et al.: Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. J. Environ. Manag. 129, 586–592 (2013)

    Article  CAS  Google Scholar 

  100. Chen, Y.-L., Shih, P.-H., Chiang, L.-C., et al.: The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. J. Hazard. Mater. 170, 443–448 (2009)

    Article  CAS  Google Scholar 

  101. wen Zhao, Z., yuan Chai, L., Peng, B., et al.: Arsenic vitrification by copper slag based glass: mechanism and stability studies. J. Non-Cryst. Solids 466, 21–28 (2017)

    Google Scholar 

  102. Zhao, Z., Chai, L., Liang, Y., et al.: The vitrification of arsenic-rich residue using iron phosphate glass. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 58(3), 109–114 (2017)

    Article  Google Scholar 

  103. Reis, S., Karabulut, M., Day, D.: Chemical durability and structure of zinc–iron phosphate glasses. J. Non-Cryst. Solids 292, 150–157 (2001)

    Article  CAS  Google Scholar 

  104. Zhao, Z., Liang, Y., Min, X., et al.: The effects of antimony oxide on the structure of iron phosphate glass for the immobilisation of arsenic. Glass Technol. Eur. J. Glass Sci. Technol. Part A 56, 196–202 (2015)

    Article  Google Scholar 

  105. Karamberi, A., Orkopoulos, K., Moutsatsou, A.: Synthesis of glass-ceramics using glass cullet and vitrified industrial by-products. J. Eur. Ceram. Soc. 27, 629–636 (2007)

    Article  CAS  Google Scholar 

  106. Moustakas, K., Mavropoulos, A., Katsou, E., et al.: Leaching properties of slag generated by a gasification/vitrification unit: the role of pH, particle size, contact time and cooling method used. J. Hazard. Mater. 207, 44–50 (2012)

    Article  CAS  Google Scholar 

  107. Moguš-Milanković, A., Šantić, A., Reis, S.T., et al.: Studies of lead–iron phosphate glasses by Raman, Mössbauer and impedance spectroscopy. J. Non-Cryst. Solids 351, 3246–3258 (2005)

    Article  CAS  Google Scholar 

  108. Rosli, A.N., Zabidi, N.A., Kassim, H.A., et al.: Ab initio calculation of vibrational frequencies of AsO glass. J. Non-Cryst. Solids 356, 428–433 (2010)

    Article  CAS  Google Scholar 

  109. Gilliam, S.J., Merrow, C.N., Kirkby, S.J., et al.: Raman spectroscopy of arsenolite: crystalline cubic As4O6. J. Solid State Chem. 173, 54–58 (2003)

    Article  CAS  Google Scholar 

  110. Zhang, L., Brow, R.K., Schlesinger, M.E., et al.: Glass formation from iron-rich phosphate melts. J. Non-Cryst. Solids 356, 1252–1257 (2010)

    Article  CAS  Google Scholar 

  111. Lai, Y.M., Liang, X.F., Yang, S.Y., et al.: Raman spectra study of iron phosphate glasses with sodium sulfate. J. Mol. Struct. 10(13), 134–137 (2012)

    Article  CAS  Google Scholar 

  112. Silva, A., Correia, R., Oliveira, J., et al.: Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. J. Eur. Ceram. Soc. 30, 1253–1258 (2010)

    Article  CAS  Google Scholar 

  113. Couchman, P., Karasz, F.: A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11, 117–119 (1978)

    Article  CAS  Google Scholar 

  114. Gayathri Devi, A.V., Rajendran, V., Rajendran, N.: Structure, solubility and bioactivity in TiO2-doped phosphate-based bioglasses and glass–ceramics. Mater. Chem. Phys. 124, 312–318 (2010)

    Google Scholar 

  115. Qian, B., Liang, X., Wang, C., et al.: Structure and properties of calcium iron phosphate glasses. J. Nucl. Mater. 443, 140–144 (2013)

    Article  CAS  Google Scholar 

  116. Glasser, F.: Chemistry of cement-solidified waste forms. Chem. Microstruct. Solidified Waste Forms 1–39 (1993)

    Google Scholar 

  117. Phenrat, T., Marhaba, T.F., Rachakornkij, M.: A SEM and X-ray study for investigation of solidified/stabilized arsenic–iron hydroxide sludge. J. Hazard. Mater. 118, 185–195 (2005)

    Article  CAS  Google Scholar 

  118. Myneni, S.C., Traina, S.J., Logan, T.J., et al.: Oxyanion behavior in alkaline environments: sorption and desorption of arsenate in ettringite. Environ. Sci. Technol. 31, 1761–1768 (1997)

    Article  CAS  Google Scholar 

  119. Yoon, I.-H., Moon, D.H., Kim, K.-W., et al.: Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manag. 91, 2322–2328 (2010)

    Article  CAS  Google Scholar 

  120. Moon, D.H., Dermatas, D.: Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. J. Hazard. Mater. 141, 388–394 (2007)

    Article  CAS  Google Scholar 

  121. Sullivan, C., Tyrer, M., Cheeseman, C.R., et al.: Disposal of water treatment wastes containing arsenic—a review. Sci. Total Environ. 408, 1770–1778 (2010)

    Article  CAS  Google Scholar 

  122. Colombo, P., Brusatin, G., Bernardo, E., et al.: Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr. Opin. Solid State Mater. Sci. 7, 225–239 (2003)

    Article  CAS  Google Scholar 

  123. Park, Y.J., Heo, J.: Vitrification of fly ash from municipal solid waste incinerator. J. Hazard. Mater. 91, 83–93 (2002)

    Article  CAS  Google Scholar 

  124. El-Shimy, Y.N., Amin, S.K., El-Sherbiny, S.A., et al.: The use of cullet in the manufacture of vitrified clay pipes. Constr. Build. Mater. 73, 452–457 (2014)

    Article  Google Scholar 

  125. Federico, L., Chidiac, S.: Waste glass as a supplementary cementitious material in concrete–critical review of treatment methods. Cem. Concr. Compos. 31, 606–610 (2009)

    Article  CAS  Google Scholar 

  126. Bernardo, E., Doyle, J., Hampshire, S.: Sintered feldspar glass–ceramics and glass–ceramic matrix composites. Ceram. Int. 34, 2037–2042 (2008)

    Article  CAS  Google Scholar 

  127. Dalby, K.N., Nesbitt, H.W., Zakaznova-Herzog, V.P., et al.: Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS: implications for O and Si speciation. Geochim. Cosmochim. Acta 71, 4297–4313 (2007)

    Article  CAS  Google Scholar 

  128. Ribeiro, A.S.M., Monteiro, R.C.C., Davim, E.J.R., et al.: Ash from a pulp mill boiler—characterisation and vitrification. J. Hazard. Mater. 179, 303–308 (2010)

    Article  CAS  Google Scholar 

  129. Hassaan, M., Saudi, H., Saad, H.M., et al.: Structural study of glass and glass ceramics prepared with Egyptian Basalt. Silicon 7, 383–391 (2015)

    Article  CAS  Google Scholar 

  130. Contreras, M.L., Arostegui, J.M., Armesto, L.: Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations. Fuel 88, 539–546 (2009)

    Article  CAS  Google Scholar 

  131. Sitarz, M., Mozgawa, W., Handke, M.: Rings in the structure of silicate glasses. J. Mol. Struct. 511, 281–285 (1999)

    Article  Google Scholar 

  132. Merzbacher, C.I., White, W.B.: The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J. Non-Cryst. Solids 130, 18–34 (1991)

    Article  CAS  Google Scholar 

  133. Lubas, M., Sitarz, M., Fojud, Z., et al.: Structure of multicomponent SiO2–Al2O3–Fe2O3–CaO–MgO glasses for the preparation of fibrous insulating materials. J. Mol. Struct. 744, 615–619 (2005)

    Article  CAS  Google Scholar 

  134. Villegas, M., Navarro, J.F.: Characterization of B2O3-SiO2 glasses prepared via sol-gel. J. Mater. Sci. 23, 2464–2478 (1988)

    Article  CAS  Google Scholar 

  135. MacDonald, S.A., Schardt, C.R., Masiello, D.J., et al.: Dispersion analysis of FTIR reflection measurements in silicate glasses. J. Non-Cryst. Solids 275, 72–82 (2000)

    Article  CAS  Google Scholar 

  136. De Ferri, L., Bersani, D., Lorenzi, A., et al.: Structural and vibrational characterization of medieval like glass samples. J. Non-Cryst. Solids 358, 814–819 (2012)

    Article  CAS  Google Scholar 

  137. Ibrahim, M.M., Fanny, M.A., Hassaan, M., et al.: Optical, FTIR and DC conductivity of soda lime silicate glass containing cement dust and transition metal ions. Silicon 8(3), 443–453 (2016)

    Article  CAS  Google Scholar 

  138. ElBatal, F., Selim, M., Marzouk, S., et al.: UV-vis absorption of the transition metal-doped SiO2–B2O3–Na2O glasses. Phys. B 398, 126–134 (2007)

    Article  CAS  Google Scholar 

  139. Akatov, A., Nikonov, B., Omel’yanenko, B., et al.: Structure of borosilicate glassy materials with high concentrations of sodium, iron, and aluminum oxides. Glass Phys. Chem. 35, 245–259 (2009)

    Google Scholar 

  140. Serra, J., Gonzalez, P., Liste, S., et al.: Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J. Mater. Sci. Mater. Med. 13, 1221–1225 (2002)

    Article  CAS  Google Scholar 

  141. Brotikovskii, O., Pen, K., Cherntsov, S.: IR spectroscopic investigation of the formation and properties of lead-silicate glass films on silicon surfaces. J. Appl. Spectrosc. 32, 365–369 (1980)

    Article  Google Scholar 

  142. zur Loye, K.D., Latshaw, A.M., Smith, M.D., et al.: Synthesis and crystal structure of sodium arsenate oxyhydroxide: Na4(AsO4)OH. J. Chem. Crystallogr. 45, 20–25 (2015)

    Google Scholar 

  143. Mekki, A., Khattak, G., Wenger, L.: Structure and magnetic properties of lead vanadate glasses. J. Non-Cryst. Solids 330, 156–167 (2003)

    Article  CAS  Google Scholar 

  144. Sawyer, R., Nesbitt, H.W., Secco, R.A.: High resolution X-ray Photoelectron Spectroscopy (XPS) study of K2O–SiO2 glasses: Evidence for three types of O and at least two types of Si. J. Non-Cryst. Solids 358, 290–302 (2012)

    Article  CAS  Google Scholar 

  145. Gresch, R., Müller-Warmuth, W., Dutz, H.: X-ray photoelectron spectroscopy of sodium phosphate glasses. J. Non-Cryst. Solids 34, 127–136 (1979)

    Article  CAS  Google Scholar 

  146. Minami, T., Hayashi, A., Tatsumisago, M.: Preparation and characterization of lithium ion-conducting oxysulfide glasses. Solid State Ion. 136, 1015–1023 (2000)

    Article  Google Scholar 

  147. Flambard, A., Videau, J.-J., Delevoye, L., et al.: Structure and nonlinear optical properties of sodium–niobium phosphate glasses. J. Non-Cryst. Solids 354, 3540–3547 (2008)

    Article  CAS  Google Scholar 

  148. Fu, Z., Wu, F., Chen, L., et al.: Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ. Pollut. (2016)

    Google Scholar 

  149. Guo, X., Song, Y.: Substance flow analysis of copper in China. Resour. Conserv. Recycl. 52(6), 874–882 (2008)

    Article  Google Scholar 

  150. Kavouras, P., Komninou, P., Chrissafis, K., et al.: Microstructural changes of processed vitrified solid waste products. J. Eur. Ceram. Soc. 23(8), 1305–1311 (2003)

    Article  CAS  Google Scholar 

  151. El-Damrawi, G., El-Egili, K.: Characterization of novel CeO2–B2O3 glasses, structure and properties. Phys. B 299(1), 180–186 (2001)

    Article  CAS  Google Scholar 

  152. El-Batal, F.H., Khalil, E.M., Hamdy, Y.M., et al.: FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. Silicon 2(1), 41–47 (2010)

    Article  CAS  Google Scholar 

  153. Wang, M., Mei, L.I., Cheng, J., et al.: Free volume and structure of Gd2O3 and Y2O3 co-doped silicate glasses. J. Non-Cryst. Solids 379, 145–149 (2013)

    Article  CAS  Google Scholar 

  154. Lu, M., Wang, F., Chen, K., et al.: The crystallization and structure features of barium-iron phosphate glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 1–6 (2015)

    Article  CAS  Google Scholar 

  155. Husung, R.D., Doremus, R.H.: The infrared transmission spectra of four silicate glasses before and after exposure to water. J. Mater. Res. 5(10), 2209–2217 (1990)

    Article  CAS  Google Scholar 

  156. Steger, E.: Spektroskopische Untersuchungen zum Bindungszustand in Phosphorsäurederivaten Amidoderivate. Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Physikalische Chemie 61(61), 1004–1007 (2015)

    Google Scholar 

  157. Mansour, E.: Semi-quantitative analysis for FTIR spectra of Al2O3-PbO-B2O3-SiO2 glasses. J. Non-Cryst. Solids 358(3), 454–460 (2012)

    Article  CAS  Google Scholar 

  158. Mekki, A., Holland, D., Mcconville, C.F., et al.: An XPS study of iron sodium silicate glass surfaces. J. Non-Cryst. Solids 208(208), 267–276 (1996)

    Article  CAS  Google Scholar 

  159. Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54(9), 3570–3582 (1931)

    Google Scholar 

  160. Wang, P.W., Zhang, L.: Structural role of lead in lead silicate glasses derived from XPS spectra. J. Non-Cryst. Solids 194(1–2), 129–134 (1996)

    Article  CAS  Google Scholar 

  161. Serra, J., González, P., Liste, S., et al.: FTIR and XPS studies of bioactive silica based glasses. J. Non-Cryst. Solids 332(1), 20–27 (2003)

    Article  CAS  Google Scholar 

  162. Raghavaiah, B.V., Laxmikanth, C., Veeraiah, N.: Spectroscopic studies of titanium ions in PbO–Sb2O3–As2O3 glass system. Opt. Commun. 235(4–6), 341–349 (2004)

    Article  CAS  Google Scholar 

  163. Lee, K., Zimmerman, J.D., Xiao, X., et al.: Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111(3), 84–327 (2012)

    Article  CAS  Google Scholar 

  164. Imran, M.M.A., Saxena, N.S., Bhandari, D., et al.: Transition phenomena, crystallization kinetics and enthalpy released in binary Se100–xInx (x = 2,4 and 10) semiconducting glasses. Phys. Status Solidi 181(2), 357–368 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jie Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Min, XB., Chai, LY., Liang, YJ., Ke, Y. (2019). Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes. In: Chai, LY. (eds) Arsenic Pollution Control in Nonferrous Metallurgy. Springer, Singapore. https://doi.org/10.1007/978-981-13-6721-2_4

Download citation

Publish with us

Policies and ethics