Skip to main content

Micro/Nano Fabrication and Packaging Technologies for Bio Systems

  • Chapter
  • First Online:
Engineering of Micro/Nano Biosystems

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

The investigation and development of micro/nano biosytem requires a sealed fluidic platform to separate, mix or control the flow of liquids and bio samples as well as a biochemical surface processing to selectively capture or repel biospecies. The first part of this chapter reviews the main techniques used for the fabrication of microchannels, reservoirs, pillars,… in various substrate materials. This includes direct machining techniques such as mechanical cutting, lithography and electroforming, as well as various replication techniques such as PDMS or UV curable resin casting, hot embossing and overall injection molding that is compatible with mass production. The second part describes the recent advances in the development of functionalized surfaces and their applications in biochips. First a focus is put on bioreceptors immobilization and a brief presentation of bioreceptors (antibodies and aptamers) is included. Next the polymers employed against plasmatic proteins fouling are reviewed and finally the surface chemistry preventing bacteria attachment is presented. The two approaches leading to bacteria repelling or killing, depending on the polymers employed, is discussed. The last chapter part is devoted to a critical analysis of bonding and welding techniques proposed to seal fluidic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Shang, Y. Zeng, Y. Zeng, Integrated microfluidic lectin barcode platform for high performance focused glycomic profiling. Sci. Rep. 6, 20297 (2016)

    Article  Google Scholar 

  2. E. Primiceri, M.-S. Chiriaco, R. Rinaldi, G. Maruccio, Cell chips as new tools for cell biology—results, perspectives and opportunities. Lab Chip 13, 3789 (2013)

    Article  Google Scholar 

  3. L.N. Abdulkadir, K. Abou-El-Hossein, A.I. Jurmare, P.B. Odedeyi, M.M. Liman, T.A. Olaniyan (2018) Ultra-precision diamond turning of optical silicon-a review. Int. J. Adv. Manuf. Technol. Published online: 20 January 2018 (2018)

    Google Scholar 

  4. J. Nestler, A. Morschhauser, K. Hiller, T. Otto, S. Bigot, J. Auerswald, H.F. Knapp, J. Gavillet, T. Gessner, Polymer lab-on-chip systems with integrated electrochemical pumps suitable for large-scale fabrication. Int. J. Adv. Manuf. Technol. 47, 137 (2010)

    Article  Google Scholar 

  5. P. Li, D. Zdebski, H.H. Langen, A.M. Hoogstrate, J.A.J. Oosterling, R.H. Munnig Schmidt, A.M. Allen, Micromilling of thin ribs with high aspect ratios. J. Micromech. Microeng. 20(11), 115013 (2010)

    Article  Google Scholar 

  6. D.L. Zariatin, G. Kiswanto, T.J. Ko, Investigation of the micro-milling process of thin-wall features of aluminum alloy 1100. Int. J. Adv. Manuf. Technol. 93, 2625 (2017)

    Article  Google Scholar 

  7. E.G. Mintegi, Micromilling technology: a global review. (2017). https://www.slideshare.net/endika55/micromilling-technology-a-global-review. Accessed 17 July 2017

  8. E. Kuram, B. Ozcelik, Micro milling, in Modern Mechanical Engineering, Materials Forming, Machining and Tribology, zd. by J.P. Davim (Springer, Berlin Heidelberg, 2014) p. 325

    Google Scholar 

  9. D.J. Guckenberger, T.E. de Groot, A.M.D. Wan, D.J. Beebe, E.W.K. Young, Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15, 2364 (2014)

    Article  Google Scholar 

  10. X. Cheng, Z. Wang, K. Nakamoto, K. Yamazaki, A study on the micro tooling for micro/nano milling. Int. J. Adv. Manuf. Technol. 53, 523–533 (2011)

    Article  Google Scholar 

  11. H. Weule, V. Hüntrup, H. Tritschler, Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann. 50(1), 61 (2001)

    Article  Google Scholar 

  12. X. Liu, R.E. DeVor, S.G. Kapoor, An analytical model for the prediction of minimum chip thickness in micromachining. J. Manuf. Sci. Eng. 128(2), 474 (2006)

    Article  Google Scholar 

  13. E. Vazquez, C.A. Rodríguez, A. Elías-Zúñiga, J. Ciurana, An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling. Int. J. Adv. Manuf. Technol. 51, 945 (2010)

    Article  Google Scholar 

  14. T. Wu, K. Cheng, R. Rakowski, Investigation on tooling geometrical effects of micro tools and the associated micro milling performance. Proc IMechE Part B: J Eng. Manuf. 226(9), 1442 (2012)

    Article  Google Scholar 

  15. J. Steigert, S. Haeberle, T. Brenner, C. Müller, C.P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle, J. Ducree, Rapid prototyping of microfluidic chips in COC. J. Micromech. Microeng. 17, 333–341 (2007)

    Article  Google Scholar 

  16. J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35(7), 491 (2002)

    Article  Google Scholar 

  17. A. San-Miguel, H. Lu, Microfluidics as a tool for C. elegans research, WormBook, ed. The C. elegans Research Community, WormBook (2013)

    Google Scholar 

  18. M.A. Eddings, M.A. Johnson, B.K. Gale, Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18(6), 067001 (2008)

    Article  Google Scholar 

  19. S. Mohanty, D.J. Beebe, G. Mensing, PDMS connectors for macro to microfluidic interfacing. Chips & Tips (Lab on a Chip): 23 October 2006. http://blogs.rsc.org/chipsandtips/2006/10/23/pdms-connectors-for-macro-to-microfluidic-interfacing/?doing_wp_cron=1510476786.5287001132965087890625. Accessed 12 October 2017 (2006)

  20. J. Greener, W. Li, D. Voicu, E. Kumacheva, Reusable, robust NanoPort connections to PDMS chips. Chips & Tips (Lab on a Chip): 08 August 2008. http://blogs.rsc.org/chipsandtips/2008/10/08/reusable-robust-nanoport-connections-to-pdms-chips/. Accessed 12 October 2017

  21. J. Wang, W. Chen, J. Sun, C. Liu, Q. Yin, L. Zhang, Y. Xianyu, X. Shi, G. Hu, X. Jiang, A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles. Lab Chip 14, 1673 (2014)

    Article  Google Scholar 

  22. Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Lab-on-a-chip devices: How to close and plug the lab? Microelec. Eng. 132(25), 156 (2015)

    Article  Google Scholar 

  23. A. Mathur, S.S. Roy, M. Tweedie, S. Mukhopadhyay, S.K. Mitra, J.A. Mc Laughlin, Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Curr. Appl. Phys. 9, 1199–1202 (2009)

    Article  Google Scholar 

  24. Y.-E. Yoo, T.H. Kim, D.-S. Choi, H.-J. Lee, S.J. Choi, S.K. Kim, Study on Molding of a Nanostructured Plastic Plate and Its Surface Properties. Jap. J. Appl. Phys. 48, 06FH07 (2009)

    Google Scholar 

  25. D.-H. Kim, M.-H. Kang, Y.H. Chun, Development of a new injection molding technology: Momentary mold surface heating process. J. Injection Molding Technol. 5(4), 229 (2001)

    Google Scholar 

  26. D. Yao, B. Kim, Development of rapid heating and cooling systems for injection molding applications. Polymer Eng. Sci. 42(12), 2471 (2002)

    Article  Google Scholar 

  27. T. Saito, I. Satoh, Y. Kurosaki, A New concept of active temperature control for an injection molding process using infrared radiation heating. Polymer Eng. Sci. 42(12), 2418 (2002)

    Article  Google Scholar 

  28. J.A. Chang, S.C. Chen, J.C. Cin, Rapid mold temperature control on micro-injection molded parts with high aspect ratio micro-features, Antec 2016, 1275 (2006)

    Google Scholar 

  29. Y.E. Yoo, T.H. Kim, D.S. Choi, S.M. Hyun, H.J. Lee, K.H. Lee, S.K. Kim, B.H. Kim, Y.H. Seo, H.G. Lee, J.S. Lee, Injection molding of a nanostructured plate and measurement of its surface properties. Curr. Appl. Phys. 9(2), e12 (2009)

    Article  Google Scholar 

  30. H. Vaisocherova, E. Brynda, J. Homola, Functionalizable low-fouling coating for label-free biosensing in complex biological media. Anal. Bioanal. Chem. 407, 3927–3953 (2015)

    Article  Google Scholar 

  31. O. Seitz, P.G. Fernandes, R. Tian, N. Karnik, H.C. Wen, H. Stiegler, R.A. Chapman, E.M. Vogel, Y. Chabal, Control and stability of self-assembled monolayers under biosensing conditions. J. Mat. Chem. 21, 4384–4392 (2011)

    Article  Google Scholar 

  32. F. Rusmini, Z. Zhong, J. Feijen, Protein Immobilization Strategies for Protein. Biochips. Biomacromolecules 8, 1775–1789 (2007)

    Article  Google Scholar 

  33. T.M. Blattler, S. Pasche, M. Textor, H.J. Griesser, High salt stability and protein resistance of poly[L-lysine]-g-poly[ethylene glycol]copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir 22, 5760–5769 (2006)

    Article  Google Scholar 

  34. Z. Zhang, S. Chen, S. Jiang, Dual-functional biomimetic materials: non-fouling poly[carboxybetaine] with active functional group for proteins immobilization. Biomacromol 7, 3311–3315 (2006)

    Article  Google Scholar 

  35. H. Chen, C. Zhao, M. Zhang, Q. Chen, J. Ma, J. Zheng, Molecular understanding and structural-based design of polyacrylamides and polyacrylates as antifouling materials. Langmuir 32, 3315–3330 (2016)

    Article  Google Scholar 

  36. X. Zeng, Z. Shen, R. Mernaugh, Recombinant antibodies and their use in biosensors. Anal. Bioanal. Chem. 402, 3027–3038 (2012)

    Article  Google Scholar 

  37. S. Balamurugan, A. Obubuafo, S. Soper, D. Spivak, Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 390, 1009–1021 (2008)

    Article  Google Scholar 

  38. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Article  Google Scholar 

  39. E.S. Redeker, D.T. Ta, D. Cortens, B. Billen, W. Guedens, P. Adriaensens, Protein engineering for direct immobilization. Bioconjugate Chem. 24, 1761–1777 (2013)

    Article  Google Scholar 

  40. J.A. Camarero, New development for the site-specific attachment of proteins to surfaces. Biophys. Rev. Lett. 1, 1–28 (2006)

    Article  Google Scholar 

  41. N. Stephanopoulos, M.B. Francis, Choosing effective proteins bioconjugation strategy. Nat. Chem. Biol. 7, 876–884 (2011)

    Article  Google Scholar 

  42. M. Ammar, C. Smadja, D. Tandjidora D., M. Azzouz, J. Vigneron, A. Etcheberry, M. Taverna, E. Dufour-Gergam, Chemical engineering of self-assembled Alzheimer’s peptide on silanized silicon surface. Langmuir. 30, 5863–5872 (2014)

    Article  Google Scholar 

  43. M. Ammar, C. Smadja, L.Giang Thi Phuong, J. Vigneron, A. Etcheberry, M. Taverna, E. Dufour-Gergam, A new controlled concept of immune-sensing platform, for specific detection of Alzheimer’s biomarkers. Biosens. Bioelectron. 40, 329–395 (2013)

    Article  Google Scholar 

  44. F. Schröper, A. Baumann, A. Offenhausser, D. Mayer, Direct electrochemistry of novel affinity tag immobilized recombinant horse heart cytochrome c. Biosens. Bioelectron. 34, 171–177 (2012)

    Article  Google Scholar 

  45. J. Fick, T. Wolfram, F. Belz, S. Roke, Surface-specific interaction of the extracellular domain of protein L1 with nitrilotriacetic acid-terminated self-assembled monolayers. Langmuir 26, 1051–1056 (2010)

    Article  Google Scholar 

  46. N. Xia, L. Liu, M.G. Harrington, J. Wang, F. Zhou, Regenerable and Simultaneous Surface Plasmon Resonance Detection of Aβ[1–40] and Aβ[1–42] Peptides in Cerebrospinal Fluids with Signal Amplification by Streptavidin Conjugated to an N-Terminus-Specific Antibody. Anal. Chem. 82, 10151–10157 (2010)

    Article  Google Scholar 

  47. C. You, M. Bhagawati, A. Brecht, J. Piehler, Affinity capturing for targeting proteins into micro and nanostructures. Anal. Bioanal. Chem. 393, 1563–1570 (2009)

    Article  Google Scholar 

  48. J.-F. Lutz, Copper-free azide-alkyne cycloadditions: new insights and perspectives. Angew. Chem. Int. Ed. 47, 2182–2184 (2008)

    Article  Google Scholar 

  49. G. Fleminger, E. Hadas, T. Wolf, B. Solomon, Oriented immobilization of periodate-oxidized monoclonal antibodies on amino and hydrazide derivatives of Eupergit C. Appl. Biochem. Biotechnol. 23, 123–137 (1990)

    Article  Google Scholar 

  50. I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria and marine organisms. Adv. Mater. 23, 690–718 (2011)

    Article  Google Scholar 

  51. L.D. Unsworth, H. Sheardown, J.L. Brash, Protein resistance of surfaces prepared by sorption of end-thiolated poly[ethylene glycol] to gold: effect of surface chain density. Langmuir 21, 1036–1041 (2005)

    Article  Google Scholar 

  52. L.D. Unsworth, H. Sheardown, J.L. Brash, Protein resistant poly[ethylene oxide]-grafted surfaces: chain density-dependant multiple mechanisms of action. Langmuir 24, 1924–1929 (2008)

    Article  Google Scholar 

  53. P. Kingshott, H. Thissen, H.J. Griesser, Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23, 2043–2056 (2002)

    Article  Google Scholar 

  54. V. Hynninen, L. Vuori, M. Hannula, K. Tapio, K. Lahtonen, T. Isoniemi, E. Lehtonen, M. Hirsimäki, J.J. Toppari, M. Valden, V.P. Hytönen, Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane- polyethylene glycol overlayers and avidin-biotin technology. Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

  55. N. Aboud, D. Ferraro, M. Taverna, S. Descroix, C. Smadja, N.T. Tran, Dyneon THV, a fluorinated thermoplastic as a novel material for microchip capillary electrophoresis. Analyst. 141, 5776–5783 (2016)

    Article  Google Scholar 

  56. Y. Chang, W.L. Chu, W.Y. Chen, J. Zheng, L. Liu, R.C. Ruaan, A. Higuchi, A systematic SPR study of human plasma protein adsorption behavior on the controlled surface packing of self-assembled poly[ethylene oxide] triblock copolymer surfaces. J. Biomed. Mater. Res. A. 93, 400–408 (2010)

    Google Scholar 

  57. Y. Yang, P.G. Rouxhet, D. Chudziak, J. Telegdi, C.C. Dupont-Gillain, Influence of poly[ethylene oxide]-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity. Bioelectrochemistry Amst. Neth. 97, 127–136 (2014)

    Article  Google Scholar 

  58. P. Harder, M. Grunze, R. Dahint, G.M. Whitesides, P.E. Laibinis, Molecular Conformation in Oligo[ethylene glycol]- Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines their Ability To Resist Protein Adsorption. J. Phys. Chem. B. 102, 426–436 (1998)

    Article  Google Scholar 

  59. L.M. Feller, S. Cerritelli, M. Textor, J.A. Hubbell, S.G.P. Tosatti, Influence of Poly[propylene sulfide-block-ethylene glycol] Di- and Triblock Copolymer Architecture on the Formation of Molecular Adlayers on Gold Surfaces and Their Effect on Protein Resistance: A Candidate for Surface Modification in Biosensor Research. Macromolecules 38, 10503–10510 (2005)

    Article  Google Scholar 

  60. C. Blaszykowski, S. Sheikh, M. Thompson, Biofluids. A survey of state-of-the-art surface chemistries tominimize fouling from human and animal. Biomater. Sci. 3, 1335–1370 (2015)

    Article  Google Scholar 

  61. V. Zoulalian, S. Zürcher, S. Tosatti, M. Textor, S. Monge, J.J. Robin, Self-Assembly of Poly(ethylene glycol)−Poly(alkyl phosphonate) Terpolymers on Titanium Oxide Surfaces: Synthesis, Interface Characterization, Investigation of Nonfouling Properties, and Long-Term Stability. Langmuir 26, 74–82 (2010)

    Article  Google Scholar 

  62. R.G. Chapman, E. Ostuni, L. Yan, G.M. Whitesides, Preparation of Mixed Self-Assembled Monolayers [SAMs] That Resist Adsorption of Proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups. Langmuir 16, 6927–6936 (2000)

    Article  Google Scholar 

  63. R.G. Chapman, E. Ostuni, S. Takayama, R.E. Holmin, L. Yan, G.M. Whitesides, Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 122, 8303–8304 (2000)

    Article  Google Scholar 

  64. S.F. Chen, J. Zheng, L.Y. Li, S.Y. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 127, 14473–14478 (2005)

    Article  Google Scholar 

  65. S.F. Chen, L.Y. Liu, S.Y. Jiang, Strong Resistance of Oligo[phosphorylcholine] Self-Assembled Monolayers to Protein Adsorption. Langmuir 22, 2418–2421 (2006)

    Article  Google Scholar 

  66. P. Liu, T. Huang, P. Liu, S. Shi, Q. Chen, L. Li, J. Shen, Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J. Colloid Interface Sci. 15, 91–101 (2016)

    Article  Google Scholar 

  67. S.C. Lange, E. Van Andel, M.M.J. Smulders, H. Zuilhof, Efficient and tunable three-dimensional functionalization of fully zwitterionic antifouling surface coating. Langmuir 32, 10199–10205 (2016)

    Article  Google Scholar 

  68. Z. Zhang, M. Zhang, S. Chen, T.A. Horbett, B.D. Ratner, S. Jiang, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29, 4285 (2008)

    Article  Google Scholar 

  69. H. Vaisocherová, W. Yang, Z. Zhang, Z. Cao, G. Cheng, M. Piliarik, J. Homola, S. Jiang, Ultralow Fouling and Functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted Blood Plasma. Anal. Chem. 80, 7894–7901 (2008)

    Article  Google Scholar 

  70. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999)

    Article  Google Scholar 

  71. N.B. Jaballah, A. Bouziri, K. Mnif, A. Hamdi, A. Khaldi, W. Kchaou, Epidemiology of hospital-acquired bloodstream infections in a Tunisian pediatric intensive care unit: A 2-year prospective study. Am. J. Infect. Control 35, 613–618 (2007)

    Article  Google Scholar 

  72. R. Tan, J. Liu, M. Li, J. Huang, J. Sun, H.J. Qu, Epidemiology and antimicrobial resistance among commonly encountered bacteria associated with infections and colonization in intensive care units in a university affiliated hospital in Shanghai. Microbiol. Immunol. 47, 87–94 (2014)

    Google Scholar 

  73. L. Ferreira, A. Zumbuehl, Non-leaching surfaces capable of killing microorganisms on contact. J. Mater. Chem. 19, 7796–7806 (2009)

    Article  Google Scholar 

  74. F. Hui, C. Debiemme-Chouvry, Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromol 14, 585–601 (2013)

    Article  Google Scholar 

  75. R. Li, P. Hu, X. Ren, S.D. Worley, T.S. Huang, Antimicrobial N-halamine modified chitosan films. Carbohydr. Polym. 92, 534–539 (2013)

    Article  Google Scholar 

  76. M.L.W. Knetsch, L.H. Koole, New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3, 340–366 (2011)

    Article  Google Scholar 

  77. F. Siedenbiedel, J.C. Tiller, Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4, 46–71 (2012)

    Article  Google Scholar 

  78. N. Gour, K.X. Ngo, C. Vebert-Nardin, Anti-infectious surfaces achieved by polymer modification. Macromol. Mater. Eng. 299, 648–668 (2014)

    Article  Google Scholar 

  79. K.D. Park, Y.S. Kim, D.K. Han, Y.H. Kim, E.B.H. Lee, H. Suh, K.S. Choi, Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19, 851–859 (1998)

    Article  Google Scholar 

  80. N.P. Desai, S.F.A. Hossainy, J.A. Hubbell, Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13, 417–420 (1992)

    Article  Google Scholar 

  81. A. Roosjen, H.J. Kaper, H.C. Van der Mei, W. Norde, H.J. Busscher, Inhibition of adhesion of yeasts and bacteria by poly[ethylene oxide]-brushes on glass in a parallel plate flow chamber. Microbiology 149, 3239–3246 (2003)

    Article  Google Scholar 

  82. A. Roosjen, H.J. Kaper, H.C. Van der Meir, W. Norde, Microbial adhesion to poly[ethylene oxide] brushes: influence of polymer chain length and temperature. Langmuir 25, 10949–10955 (2004)

    Article  Google Scholar 

  83. Z. Geng, R. Wang, X. Zhuo, Z. Li, Y. Huang, L. Ma, Z. Cui, S. Zhu, Y. Liang, Y. Liu, H. Bao, X. Li, Q. Huo, Z. Liu, X. Yang, Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng., C 71, 852–861 (2017)

    Article  Google Scholar 

  84. J.C. Tiller, S.B. Lee, K. Lewis, A.M. Klibanov, Polymer surfaces derivatized with poly[vinyl-N-hexylpyridinium] kill airborne and waterborne bacteria. Biotechnol. Bioengen. 79, 465–471 (2002). https://doi.org/10.1002/bit.10299

    Article  Google Scholar 

  85. J.C. Tiller, C.J. Liao, K. Lewis, A.M. Klibanov, Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. USA. 98, 5981–5985 (2001)

    Article  Google Scholar 

  86. M. Andresen, P. Stenstad, T. Moretro, S. Langsrud, K. Syverud, L.S. Johansson, P. Stenius, Non leaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromol 8, 2149–2155 (2007)

    Article  Google Scholar 

  87. A.J. Isquith, E.A. Abbot, P.A. Walters, Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl. Microbiol. 24, 859–863 (1972)

    Google Scholar 

  88. G. Harkes, J. Dankert, J. Feijen, Growth of uropathogenic Escherichia coli strains at solid surfaces. J. Biomater. Sci. Polym. Ed. 3, 403–418 (1992)

    Article  Google Scholar 

  89. B. Gottenbos, H.C. Van der Mei, F. Klatter, P. Nieuwenhuis, H.J. Busscher, In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23, 1417–1423 (2002)

    Article  Google Scholar 

  90. M.J. Saif, J. Anwar, M.A. Munawar, A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces. Langmuir 25, 377–379 (2009)

    Article  Google Scholar 

  91. D. Druvari, N.D. Koromilas, G.C. Lainioti, G. Bokias, G. Vasilopoulos, Polymeric quaternary ammonium-containing coatings with potential dual contact-based and release-based antimicrobial activity. ACS Appl. Mater. Interfaces. 8, 35593–35605 (2016)

    Article  Google Scholar 

  92. E. Kougia, M. Tselepi, G. Vasilopoulos, G.C. Lainioti, N.D. Koromilas, D. Druvari, G. Bokias, A. Vantarakis, J.K. Kallitsis, Evaluation of antimicrobial efficiency of new polymers comprised by covalently attached and/or electrostatically bound bacteriostatic species. Based on Quaternary Ammonium Compounds. Molecules 20, 21313–21327 (2015)

    Google Scholar 

  93. E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4, 1457–1465 (2003)

    Article  Google Scholar 

  94. A. Konwar, S. Kalita, J. Kotoky, D. Chowdhury, Chitosan–Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm. ACS Appl. Mater. Interfaces. 8, 20625–20634 (2016)

    Article  Google Scholar 

  95. E.P. Ivanova, J. Hasan, H.K. Webb, V.K. Truong, G.S. Watson, J.A. Watson, V.A. Baulin, S. Pogodin, J.Y. Wang, M.J. Tobin, C.N. Löbbe, R.J. Crawford, Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small 8, 2489–2494 (2012)

    Article  Google Scholar 

  96. S. Pogodin, J. Hasan, V.A. Baulin, H.K. Webb, V.K. Truong, H.P. Nguyen, V. Boshkovikj, C.J. Fluke, G.S. Watson, J.A. Watson, R.J. Crawford, E.P. Ivanova, Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophysical J. 104, 835–840 (2013)

    Article  Google Scholar 

  97. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 5463 (2000)

    Article  Google Scholar 

  98. P. Rezai, P.R. Selvaganapathy, G.R. Wohl, Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization. J. Micromech. Microeng. 21, 065024 (2011)

    Article  Google Scholar 

  99. S.K. Sia, G.M. Whitesides, Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24(21), 3563 (2003)

    Article  Google Scholar 

  100. M.-E. Vlachopoulou, A. Tserepi, P. Pavli, P. Argitis, M. Sanopoulou, K. Misiakos, A low temperature surface modification assisted method for bonding plastic substrates. J. Micromech. Microeng. 19, 015007 (2009)

    Article  Google Scholar 

  101. H.-Y. Chen, A.A. McClelland, Z. Chen, J. Lahann, Solventless adhesive bonding using reactive polymer coatings. Anal. Chem. 80, 4119 (2008)

    Article  Google Scholar 

  102. H.H. Ruf, T. Knoll, K. Misiakos, R.B. Haupt, M. Denninger, L.B. Larsen, P.S. Petrou, S.E. Kakabakos, E. Ehrentreich-Förster, F.F. Bier, Biochip-compatible packaging and micro-fluidics for a silicon opto-electronic biosensor. Microelec. Eng. 83, 1677 (2006)

    Article  Google Scholar 

  103. H. Shinohara, J. Mizuno, S. Shoji, Low-Temperature polymer bonding using surface hydrophilic treatment for chemical/bio microchips, in Solid State Circuits Technologies, ed. by J.W. Swart, (InTechOpen), Chap. 22, p. 445 (2010)

    Google Scholar 

  104. H. Yu, Z.Z. Chong, S.B. Tor, E. Liu, N.H. Loh, Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv. 5, 8377 (2015)

    Article  Google Scholar 

  105. L. Brown, T. Koerner, J.H. Horton, R.D. Oleschuk, Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6, 66 (2006)

    Article  Google Scholar 

  106. M.I. Mohammed, K. Quayle, R. Alexander, E. Doeven, R. Nai, S.J. Haswell, A.Z. Kouzani, I. Gibson, Improved manufacturing quality and bonding of laser machined microfluidic systems. Procedia Technology 20, 219 (2015)

    Article  Google Scholar 

  107. J.W. Lai Pik, Carbon nanotube microwave-assisted thermal bonding of plastic micro biochip. Dissertation, The Hong Kong Polytechnic University (2010)

    Google Scholar 

  108. H. Klank, J.P. Kutter, O. Geschke, CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2, 242 (2002)

    Article  Google Scholar 

  109. D.A. Mair, M. Rolandi, M. Snauko, R. Noroski, F. Svec, J.M.J. Frechet, Room-temperature bonding for plastic high-pressure microfluidic chips. Anal. Chem. 79, 5097 (2007)

    Article  Google Scholar 

  110. R.T. Kelly, T. Pan, A.T. Woolley, Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Anal. Chem. 77(11), 3536 (2005)

    Article  Google Scholar 

  111. D. Figeys, Y.B. Ning, R. Aebersold, A microfabricated device for rapid protein identification by microelectrospray ion trap mass spectrometry. Anal. Chem. 69(16), 3153 (1997)

    Article  Google Scholar 

  112. J. Tsujino, M. Hongoh, M. Yoshikuni, H. Hashii, T. Ueoka, Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies. Ultrasonics 42, 131 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoo, Y.E., Smadja, C., Ammar, M. (2020). Micro/Nano Fabrication and Packaging Technologies for Bio Systems. In: Barbillon, G., Bosseboeuf, A., Chun, K., Ferrigno, R., Français, O. (eds) Engineering of Micro/Nano Biosystems. Microtechnology and MEMS. Springer, Singapore. https://doi.org/10.1007/978-981-13-6549-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6549-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6548-5

  • Online ISBN: 978-981-13-6549-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics