Skip to main content

A Current Scenario on Role of Brassinosteroids in Plant Defense Triggered in Response to Biotic Challenges

  • Chapter
  • First Online:
Brassinosteroids: Plant Growth and Development

Abstract

Various biotic stresses induced by microbes/pathogens affect growth, yield and production in plants. Plants sequester a broad spectrum of receptor armory to instigate innate immune approaches which are unbeatable by pathogens. Several phytohormones, interact in multifaceted interconnected signaling networks. Recent studies have elucidated direct or indirect regulation of plant defense responses by phytohormones. Brassinosteroids (BRs), a growth-promoting hormone is also an imperative plant defense regulator. They have been recently observed as a modulator of plant defense response to pathogen attack. They enhance plants resistance to a wide array of plant diseases. BRs increase the efficacy of Pathogen Assisted Molecular Patterns (PAMP) triggered immunity. They also mediate crosstalk between different defense-signaling cascades including phytohormones signaling, DELLA proteins, Pattern-Recognition Receptors Triggered Innate Immunity (PTI) and plant pathogen interaction. Furthermore, BRs also regulate sulfur metabolism and production of nitric oxide and consequently affect plants immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., & Harberd, N. P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, F., Singh, A., & Kamal, A. (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology & Biotechnology, 6, 56–62.

    Google Scholar 

  • Albrecht, C., Boutrot, F., Segonzac, C., Schwessinger, B., Gimenez-Ibanez, S., Chinchilla, D., Rathjen, J. P., de Vries, S. C., & Zipfel, C. (2012). Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences, 109, 303–308.

    Article  CAS  Google Scholar 

  • Ali, S. S., Kumar, G. S., Khan, M., & Doohan, F. M. (2013). Brassinosteroid enhances resistance to fusarium diseases of barley. Phytopathology, 103, 1260–1267.

    Article  CAS  PubMed  Google Scholar 

  • Ali, S. S., Gunupuru, L. R., Kumar, G. S., Khan, M., Scofield, S., & Nicholson, P. (2014). Plant disease resistance is augmented in barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biology, 14, 1.

    Article  Google Scholar 

  • Alvey, L., & Harberd, N. P. (2005). DELLA proteins: Integrators of multiple plant growth regulatory inputs? Physiologia Plantarum, 123, 153–160.

    Article  CAS  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    CAS  PubMed  Google Scholar 

  • Bar, M., Sharfman, M., Ron, M., & Avni, A. (2010). BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. The Plant Journal, 63, 791–800.

    Article  CAS  PubMed  Google Scholar 

  • Belkhadir, Y., Jaillais, Y., Epple, P., Balsemao-Pires, E., Dangl, J. L., & Chory, J. (2012). Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proceedings of the National Academy of Sciences, 109, 297–302.

    Article  CAS  Google Scholar 

  • Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., & Sheen, J. (2010). Differential innate immune signaling via Ca2+ sensor protein kinases. Nature, 464, 418–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bove, J. M. (2006). Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7–37.

    Google Scholar 

  • Canales, E., Coll, Y., Hernández, I., Portieles, R., García, M. R., López, Y., Aranguren, M., Alonso, E., Delgado, R., Luis, M., & Batista, L. (2016). Candidatus Liberibacter asiaticus, causal agent of citrus Huanglongbing, is reduced by treatment with Brassinosteroids. PLoS One, 11, e0146223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y. L., Lee, C. Y., Cheng, K. T., Chang, W. H., Huang, R. N., & Nam, H. G. (2014). Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell, 26, 4135–4148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, S. P., Kanwar, M., Bhardwaj, R., Yu, J. Q., & Tran, L. S. P. (2012). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One, 7, e33210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colebrook, E. H., Thomas, S. G., Phillips, A. L., & Hedden, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Botany, 217, 67–75.

    CAS  Google Scholar 

  • Cui, J. X., Zhou, Y. H., Ding, J. G., Xia, X. J., Shi, K., Chen, S. C., Asami, T., Chen, Z., & Yu, J. Q. (2011). Role of nitric oxide in hydrogen peroxide dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell & Environment, 34, 347–358.

    Article  CAS  Google Scholar 

  • De Bruyne, L., Hofte, M., & De Vleesschauwer, D. (2014). Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7, 943–959.

    Article  PubMed  CAS  Google Scholar 

  • De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., Vera-Cruz, C., Kikuchi, S., & Höfte, M. (2012). Brassinosteroids antagonize gibberellin- and salicylate mediated root immunity in rice. Plant Physiology, 158, 1833–1846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vleesschauwer, D., Gheysen, G., & Hofte, M. (2013). Hormone defense networking in rice: Tales from a different world. Trends in Plant Science, 18, 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Denance, N., Sánchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 24, 155.

    Google Scholar 

  • Deng, X. G., Zhu, T., Zou, L. J., Han, X. Y., Zhou, X., Xi, D. H., Zhang, D. W., & Lin, H. H. (2016). Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. The Plant Journal, 85, 478–493.

    Article  CAS  PubMed  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Friebe, A. (2006). Brassinosteroids in induced resistance and induction of tolerances to abiotic stress in plants. Ludwig-Erhard-Allee 2, 531 Bonn, Germany.

    Google Scholar 

  • Gao, X. H., Xiao, S. L., Yao, Q. F., Wang, Y. J., & Fu, X. D. (2011). An updated GA signaling ‘relief of repression’ regulatory model. Molecular Plant, 4, 601–606.

    Article  CAS  PubMed  Google Scholar 

  • Gao, W., Long, L., Zhu, L. F., Xu, L., Gao, W. H., & Sun, L. Q. (2013). Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Molecular & Cellular Proteomics, 12, 3690–3703.

    Article  CAS  Google Scholar 

  • Goddard, M. L., Mottier, N., Jeanneret-Gris, J., Christen, D., Tabacchi, R., & Abou-Mansour, E. (2014). Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. Journal Agriculture Food Chemistry, 62, 8602–8607.

    Article  CAS  Google Scholar 

  • Hao, J., Yin, Y., & Fei, S. Z. (2013). Brassinosteroid signaling network: Implications on yield and stress tolerance. Plant Cell Reports, 32, 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Yadav, S., Ali, B., & Ahmad, A. (2010). Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russian Journal of Plant Physiology, 57, 212–221.

    Article  CAS  Google Scholar 

  • He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S. D., & Li, J. (2007). BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Current Biology, 17, 1109–1115.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Zhang, H., Sun, Z., Li, J., Hong, G., Zhu, Q., Zhou, X., MacFarlane, S., Yan, F., & Chen, J. (2017). Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. The New Phytologist, 214, 388–399.

    Article  CAS  PubMed  Google Scholar 

  • Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7, 1267–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager, C. E., Symons, G. M., Ross, J. J., Smith, J. J., & Reid, J. B. (2005). The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta, 221, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Jager, C. E., Symons, G. M., Ross, J. J., & Reid, J. B. (2008). Do brassinosteroids mediate the water stress response? Physiologia Plantarum, 133, 417–425.

    Article  CAS  PubMed  Google Scholar 

  • Jaillais, Y., Belkhadir, Y., Balsemão-Pires, E., Dangl, J. L., & Chory, J. (2011). Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Sciences, 108, 8503–8507.

    Article  CAS  Google Scholar 

  • Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., Chen, Z., & Yu, J. Q. (2012). Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. The New Phytologist, 194, 932–943.

    Article  CAS  PubMed  Google Scholar 

  • Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A., & Zipfel, C. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell, 54, 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, R., Ohri, P., & Bhardwaj, R. (2013). Effect of 28-homobrassinolide on susceptible and resistant cultivars of tomato after nematode inoculation. Plant Growth Regulation, 71, 199–205.

    Article  CAS  Google Scholar 

  • Kaur, R. A., Ohri, P. U., & Bhardwaj, R. E. (2014). Brassinosteroid-mediated changes in root-knot nematode susceptible and resistant tomato cultivars. International Journal of Pharma and Bio Sciences, 5, 1085–1093.

    Google Scholar 

  • Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–670.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Burlingame, A. L., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopriva, S., Calderwood, A., Weckopp, S. C., & Koprivova, A. (2015). Plant sulfur and big data. Plant Science, 241, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin, L. V., Joo, S. H., Kim, S. K., Pharis, R. P., & Back, T. G. (2012). Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings. Journal of Plant Growth Regulation, 31, 156–164.

    Article  CAS  Google Scholar 

  • Li, J. (2003). Brssinosteroids signal through two receptor-like kinases. Current Opinion in Plant Biology, 6, 494–499.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q. F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J. X. (2012). An interaction between BZR1 and DELLAs mediates direct signalling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling, 5, ra72.

    PubMed  Google Scholar 

  • Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., & Chen, S. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host & Microbe, 15, 329–338.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, L., Ahammed, G. J., Li, Z. X., Wei, J. P., Shen, C., Yan, P., Zhang, L. P., & Han, W. Y. (2017). Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. Journal of Plant Physiology, 214, 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Lin, W., Lu, D., Gao, X., Jiang, S., Ma, X., Wang, Z., Mengiste, T., & He, P. (2013). Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proceedings of the National Academy of Sciences, 110, 12114–12119.

    Article  CAS  Google Scholar 

  • Liu, R., Cao, P., Ren, A., Wang, S., Yang, T., Zhu, T., Shi, L., Zhu, J., Jiang, A. L., & Zhao, M. W. (2018). SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biology, 16, 388–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Duran, R., & Zipfel, C. (2015). Trade-off between growth and immunity: Role of brassinosteroids. Trends in Plant Science, 20, 1360–1385.

    Article  CAS  Google Scholar 

  • Lozano-Duran, R., Macho, A. P., Boutrot, F., Segonzac, C., Somssich, I. E., & Zipfel, C. (2013). The transcriptional regulator BZR1medi ates trade-off between plant innate immunity and growth. eLife, 2, e00983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcinkowska, E., & Wiedlocha, A. (2002). Steroid signal transduction activated at the cell membrane: From plants to animals. Acta Biochimica Polonica, 49, 735–745.

    CAS  PubMed  Google Scholar 

  • Mora-García, S., Vert, G., Yin, Y., Caño-Delgado, A., Cheong, H., & Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development, 18, 448–460.

    Article  CAS  Google Scholar 

  • Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., & Yoshida, S. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Nazar, R., Umar, S., & Khan, N. A. (2014). Involvement of salicylic acid in sulfur induced salinity tolerance: A role of glutathione. Annual Research & Review in Biology, 4, 3875.

    Article  Google Scholar 

  • Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., & Foyer, C. H. (2011). Glutathione. The Arabidopsis Book/American Society of Plant Biologists, 9, e0142.

    PubMed Central  Google Scholar 

  • Oikawa, T., Koshioka, M., Kojima, K., Yoshida, H., & Kawata, M. (2004). A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Molecular Biology, 55, 687–700.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.

    Article  CAS  PubMed  Google Scholar 

  • Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., & Scheel, D. (2011). Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. The Plant Journal, 68, 100–113.

    Article  CAS  PubMed  Google Scholar 

  • Ross, J. J., & Quittenden, L. J. (2016). Interactions between brassinosteroids and gibberellins: Synthesis or signaling? The Plant Cell, 28, 829–832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roth, U., Friebe, A., & Schnabl, H. (2000). Resistance induction in plants by a brassinosteroid-containing extract of Lychnis viscaria L. Zeitschrift für Naturforschung, 55, 552–559.

    Article  CAS  Google Scholar 

  • Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., & Krishna, P. (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 6, 28298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G., & Chinchilla, D. (2010). Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. The Journal of Biological Chemistry, 285, 9444–9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., & Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genetics, 7, e1002046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segonzac, C., & Zipfel, C. (2011). Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 14, 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Sharaf, A. E. M. M., Farghal, I. I., & Sofy, M. R. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and Lupin plants. Research Journal of Agriculture and Biological Sciences, 5, 668–673.

    CAS  Google Scholar 

  • Shi, H., Shen, Q., Qi, Y., Yan, H., Nie, H., Chen, Y., Zhao, T., Katagiri, F., & Tang, D. (2013). BR-signaling kinase1 physically associates with Flagellin Sensing 2 and regulates plant innate immunity in Arabidopsis. Plant Cell, 25, 1143–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, C., Qi, C., Ren, H., Huang, A., Hei, S., & She, X. (2015). Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. The Plant Journal, 82, 280–301.

    Article  CAS  PubMed  Google Scholar 

  • Shiu, S. H., & Bleecker, A. B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences, 98, 10763–10768.

    Article  CAS  Google Scholar 

  • Sreeramulu, S., Mostizky, Y., Sunitha, S., Shani, E., Nahum, H., Salomon, D., Hayun, L. B., Gruetter, C., Rauh, D., Ori, N., & Sessa, G. (2013). BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. The Plant Journal, 74, 905–919.

    Article  CAS  PubMed  Google Scholar 

  • Stewart Lilley, J. L., Gan, Y., Graham, I. A., & Nemhauser, J. L. (2013). The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. The Plant Journal, 76, 165–173.

    CAS  PubMed  Google Scholar 

  • Sun, T. P. (2010). Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 154, 567–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A. L., & Wang, Z. Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W., Yuan, M., Wang, R., Yang, Y., Wang, C., Oses-Prieto, J. A., Kim, T. W., Zhou, H. W., Deng, Z., Gampala, S. S., & Gendron, J. M. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology, 13, 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena, G., Boudsocq, M., & Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 14, 519–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q., & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 26, 4376–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi, V., Lamattina, L., & Cassia, R. (2013). Pharmacological and genetical evidence supporting nitric oxide requirement for 2, 4-epibrassinolide regulation of root architecture in Arabidopsis thaliana. Plant Signaling & Behavior, 8, e24712.

    Article  CAS  Google Scholar 

  • Unterholzner, S. J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K. G., Mayer, K. F., Sieberer, T., & Poppenberger, B. (2015). Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell, 27, 2261–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasyukova, N. J., Chalenko, G. I., Kaneva, I. M., & Khripach, V. A. (1994). Brassinosteroids and potato blight. Applied Biochemistry and Microbiology, 30, 464–470.

    CAS  Google Scholar 

  • Vert, G., & Chory, K. (2011). Crosstalk in cellular signaling: Background noise or the real thing? Developmental Cell, 21, 985–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. Y. (2012a). Brassinosteroids modulate plant immunity at multiple levels. Proceedings of the National Academy of Sciences, 109, 7–8.

    Article  Google Scholar 

  • Wang, Z. Y., Bai, M. Y., Oh, E., & Zhu, J. Y. (2012b). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics, 46, 701–724.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Zhao, Y., Shi, H., Li, J., Wang, Y., & Tang, D. (2018). BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiology. https://doi.org/10.1104/pp.17.01757.

  • Yang, D. H., Hettenhausen, C., Baldwin, I. T., & Wu, J. (2010). BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. Journal of Experimental Botany, 62, 641–652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, D. H., Baldwin, I. T., & Wu, J. (2013). Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of Jasmonic acid-isoleucine and Diterpene glycosides, but not Jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata. Journal of Integrative Plant Biology, 55, 514–526.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., & Rodermel, S. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Zagorchev, L., Seal, C. E., Kranner, I., & Odjakova, M. (2013). A central role for thiols in plant tolerance to abiotic stress. International Journal of Molecular Sciences, 14, 7405–7432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 52, 181–192.

    Article  CAS  Google Scholar 

  • Zhang, D., Ye, H., Guo, H., Johnson, A., Zhang, M., & Lin, H. H. (2014). Transcription factor HAT1 is phosphorylated by BIN2 kinase and mediates brassinosteroid repressed gene expression in Arabidopsis. The Plant Journal, 77, 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D. W., Deng, X. G., Fu, F. Q., & Lin, H. H. (2015). Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta, 241, 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. Y., Sae-Seaw, J., & Wang, Z. Y. (2013). Brassinosteroid signalling. Development, 140, 1615–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, T., Deng, X. G., Tan, W. R., Zhou, X., Luo, S. S., Han, X. Y., Zhang, D. W., & Lin, H. H. (2016). Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings’ response to salt stress. Physiologia Plantarum, 156, 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Zou, L. J., Deng, X. G., Zhang, L. E., Zhu, T., Tan, W. R., Muhammad, A., Zhu, L. J., Zhang, C., Zhang, D. W., & Lin, H. H. (2018). Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiologia Plantarum, 163, 196–210.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohli, S.K. et al. (2019). A Current Scenario on Role of Brassinosteroids in Plant Defense Triggered in Response to Biotic Challenges. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_13

Download citation

Publish with us

Policies and ethics