Skip to main content

Synthesis and Application of Hydroxamic Acid: A Key Secondary Metabolite of Piriformospora indica

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Owing to its outstanding contribution in promoting plant growth and mitigating environmental stresses through activating different defense mechanisms, a root-colonizing endophytic fungus Piriformospora indica has received great attention from researchers over the past three decades. Piriformospora indica is a cultivable fungus which demonstrates its adaptability of colonizing a broad spectrum of plant species through secretion/alteration of secondary metabolites and host hormone signaling pathways during the course of root association. Association of Piriformospora indica with plant roots leads to an improved plant performance like proliferation by indole-3-acetic acid production and nutrient acquisition subsequently leading to improved crop growth and production. Furthermore, its metabolites reprogram the root association which stimulates both local and systemic resistance against plant diseases through signal transduction. In this review, we focus on the importance of secondary metabolites of Piriformospora indica, limited not only in plants but also in animal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6MPTOX:

6-Methoxy podophyllotoxin

DIBOA:

Hydroxamic acids 2,4-dihydroxy-1,4-benzoxazin-3-one

DIMBOA:

2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one

HDAC:

Histone deacetylase

MeJA:

Methyl jasmonate

NCED:

9-cis-epoxycarotenoid dioxygenase

PTOX:

Podophyllotoxin

SAHA:

Suberoylanilide hydroxamic acid

References

  • Adya AK, Gautam A, Lixing Z, Varma A (2012) Characterisation of Piriformospora indica culture filtrate: protocol. In: Oelmueller R, Tripathy S, Kost G, Varma A (eds) Sebacinales. Piriformospora indica: Sebacinales and their biotechnological applications. Soil Biology, vol 33. Springer-Verlag, Berlin, pp 345–375. https://doi.org/10.1007/978-3-642-33802-1_21

    Chapter  Google Scholar 

  • Agandona VH, Corcuera LI (1985) Distribution of hydroxamic acids in Zea mays tissue. Phytochemistry 24:177

    Article  Google Scholar 

  • Agandona VH, Nlemeyer HM, Corcuera LI (1981) Effect of content and distribution of hydroxamic acids in wheat on infestation by the aphids Schizaphis graminum. Phytochemistry 20:673. https://doi.org/10.1016/0031-9422(81)85154-0

    Article  Google Scholar 

  • Agandona VH, Zuniga GF, Corcuera LI (1987) Distribution of gramine and hydroxamic acids in barley and wheat leaves. Phytochemistry 26:1917–1918

    Article  Google Scholar 

  • Ansari MW, Bains G, Shukla A, Pant RC, Tuteja N (2013) Low temperature stress ethylene and not Fusarium might be responsible for mango malformation. Plant Physiol Biochem 69:34–38. https://doi.org/10.1016/j.plaphy.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  • Argandona VH, Luza JG, Nlemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668. https://doi.org/10.1016/S0031-9422(00)83790-5

    Article  CAS  Google Scholar 

  • Awan SZ, Chandler JO, Harrison PJ, Sergeant MJ, Bugg TDH, Thompson AJ (2017) Promotion of germination using hydroxamic acid inhibitors of 9-cis-epoxycarotenoid dioxygenase. Front Plant Sci 8:357. https://doi.org/10.3389/fpls.2017.00357

    Article  PubMed  PubMed Central  Google Scholar 

  • Barazani O, Baldwin IT (2013) A mixed bag: the plant growth-promoting Sebacina vermifera impairs defense mechanisms against herbivores. In: Varma A, Kost G, Oelmuller R (eds) Piriformospora indica, sebacinales and their biotechnological applications. Springer, Berlin/Heidelberg, pp 251–262

    Google Scholar 

  • Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2012) Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J Ind Microbiol Biotechnol 40:21–27. https://doi.org/10.1007/s10295-012-1206-x

    Article  CAS  PubMed  Google Scholar 

  • Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2013) Production and characterization of acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674 for synthesis of hydroxamic acids. J Microb Biochem Technol 5:001–005. https://doi.org/10.4172/1948-5948.1000090

  • Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2014) Biotransformation of nicotinamide to nicotinyl hydroxamic acid at bench scale by amidase acyl transfer activity of Pseudomonas putida BR-1. J Mol Catal B Enzym 108:89–95. https://doi.org/10.1016/j.molcatb.2014.07.001

    Article  CAS  Google Scholar 

  • Bosiack AP, Giuliano EA, Gupta R, Mohan RR (2011) Efficacy and safety of suberoylanilide hydroxamic acid (Vorinostat) in the treatment of canine corneal fibrosis. Vet Ophthalmol 15:307–314. https://doi.org/10.1111/j.1463-5224.(2011).00985.x

    Article  PubMed  Google Scholar 

  • Camehl I, Sherameti I, Seebald E, Michal J, Oelmüller R (2013) Role of defense compounds in the beneficial interaction between Arabidopsis thaliana and Piriformospora indica. In: Varma A, Kost G, Oelmuller R (eds) Sebacinales-forms, functions and biotechnological applications soil biology series no 33. Springer, Berlin, pp 239–250

    Google Scholar 

  • Chen CH, Chein MY, Hou WC, Lin YH (2011) Method for scavenging free radicals and inhibiting tyrosinsase and melanin. US Patent US (2011)/0039898/A1

    Google Scholar 

  • Copaj SV, Villarroel E, Bravo HR, Pizarro L, Argandon VH (2006) Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z Naturforsch C 61:670–676. https://doi.org/10.1515/znc-2006-9-1010

    Article  CAS  Google Scholar 

  • Copaja SV, Nlemeyer HM, Wratten SD (1991) Hydroxamic acid levels in Chilean and British wheat seedlings. Ann Appl Biol 118:223–227. https://doi.org/10.1111/j.1744-7348.1991.tb06100.x

    Article  CAS  Google Scholar 

  • Corcuera LJ, Woodward MD, Helgeson JP, Kelman A, Upper CD (1978) 2, 4-Dihydroxy-7-methoxy-2H-1, 4-benzoxazin-3 (4H)-one, an inhibitor from Zea mays with differential activity against soft rotting Erwinia species. Plant Physiol 61(5):791–795

    Article  CAS  Google Scholar 

  • Cordoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60(10):2933–2943. https://doi.org/10.1093/jxb/erp190

    Article  CAS  PubMed  Google Scholar 

  • Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7(1):103–112. https://doi.org/10.4161/psb.7.1.18472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein WW, Rowsemitt CN, Berger PJ, Negus NC (1986) Dynamics of 6-methoxybenzoxazolinone in winter wheat. J Chem Ecol 12(10):2011–2020

    Article  CAS  Google Scholar 

  • Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96(6):1455–1464. https://doi.org/10.1007/s00253-012-4506-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannini G, Battistuzzi G, Vignola D (2015) Hydroxamic acid based histone deacetylase inhibitors with confirmed activity against the malaria parasite. Bioorg Med Chem Lett 25:459–461. https://doi.org/10.1016/j.bmcl.2014.12.051

    Article  CAS  PubMed  Google Scholar 

  • Gosal SK, Sharma M, Gosal SS, Chhibba IM, Bhatnagar K, Varma A (2011) Biohardening with Piriformospora indica improves survival rate, growth, iron uptake and cane yield of micropropagated sugarcane. Int Sugar J 113:382–388

    Google Scholar 

  • Guthrie WD, Tseng CT, Russell WA, Coats JR, Robbins JC, Tollefson JJ (1986) DIMBOA content at seven stages of plant development in a maize synthetic cultivar. J Kansas Entomol Soc 59:356–360

    Google Scholar 

  • Haron MJ, Jahangirian H, Yusof NA, Kassim A, Rafiee-Moghaddam R, Peyda M, Abdollahi Y, Hassan KF, Kandil SA, Abdel-Aziz HM, Siyam T (2011) Preparation of poly (hydroxamic acid) for separation of Zr/Y, Sr system. Chromatogr Res Int 12:1–6. https://doi.org/10.4061/(2011)/638090

    Article  Google Scholar 

  • Hassan KF, Kandil SA, Abdel-Aziz HM, Siyam T (2011) Preparation of poly (hydroxamic acid) for separation of Zr/Y, Sr system. Chromatogr Res Int 12:1–6. https://doi.org/10.4061/2011/638090

    Article  Google Scholar 

  • Haron MJ, Jahangirian H, Silong S, Yusof NA, Kassim A, Rafiee-Moghaddam R, Mahdavi B, Peyda M, Abdollahi Y, Amin J (2012) Benzyl and methyl fatty hydroxamic acids based on palm kernel oil as chelating agent for liquid-liquid iron (III) extraction. Int J Mol Sci 13(2):2148–2159

    Article  CAS  Google Scholar 

  • Hilbert M et al (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520–534. https://doi.org/10.1111/j.1469-8137.2012.04275.x

    Article  CAS  PubMed  Google Scholar 

  • Hua MD, Kumar RS, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW (2017) Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 7(1):9291. https://doi.org/10.1038/s41598-017-08715-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey TV, Richman AS, Menassa R, Brandle JE (2006) Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol Biol 61(1–2):47–62. https://doi.org/10.1007/s11103-005-5966-9

    Article  CAS  PubMed  Google Scholar 

  • Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schäfer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156(2):726–740. https://doi.org/10.1104/pp.111.176446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahangirian H, Haron MJ, Silong S, Yusof NA (2011a) Enzymatic synthesis of phenyl fatty hydroxamic acid from canola and palm oil. J Oleo Sci 60:281–286. https://doi.org/10.5650/jos.60.281

    Article  CAS  PubMed  Google Scholar 

  • Jahangirian H, Haron MJ, Silong S, Yusof NA (2011b) Enzymatic synthesis of phenyl fatty for separation of Zr/Y, Sr system. Chromatogr Res Int 12:1–6. https://doi.org/10.4061/(2011)/638090

    Article  Google Scholar 

  • Janzen DH, Juster HB, Bell EA (1977) Toxicity of secondary compounds to the seed-eating larvae of the bruchid beetle Callosobruchus maculatus. Phytochemistry 16(2):223–227

    Article  CAS  Google Scholar 

  • Jayasekera MMK, Kendall A, Shammas R, Dermyer M, Tomala M, Shapiro MA, Holler TP (2000) Novel non peptidic inhibitors of peptide deformylase. Arch Biochem Biophys 381:313–326. https://doi.org/10.1006/abbi.2000.1987

    Article  CAS  PubMed  Google Scholar 

  • Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, Von Wettstein D, Kogel KH, Schäfer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7(4):e35502

    Article  CAS  Google Scholar 

  • Kilam D, Saifi M, Abdin MZ, Agnihotri A, Varma A (2017) Endophytic root fungus Piriformospora indica affects transcription of steviol biosynthesis genes and enhances production of steviol glycosides in Stevia rebaudiana. Physiol Mol Plant Pathol 97:40–48. https://doi.org/10.1016/j.pmpp.2016.12.003

    Article  CAS  Google Scholar 

  • Klun JA, Robinson JF (1969) Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. J Econ Entomol 62:214–220

    Article  CAS  Google Scholar 

  • Klun JA, Tipton CL, Brindley TA (1967) 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) an active agent in the resistance of maize to the European corn borer. J Econ Entomol 60(6):1529–1533. https://doi.org/10.1093/jee/60.6.1529

    Article  CAS  Google Scholar 

  • Kumar H, Kaul K, Bajpai-Gupta S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492(1):276–284. https://doi.org/10.1016/j.gene.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav V, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723–725. https://doi.org/10.4161/psb.6.5.15106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy GH, Hirano SS, Victoria JI, Kelman A, Upper CD (1979) Inhibition of soft-rotting Erwinia spp. strains by 2, 4-dihydroxy-7-methoxy-2H-1, 4-benzoxazin-3 (4H)-one in relation to their pathogenicity on Zea mays. Phytopathology 69(7):757–763

    Article  CAS  Google Scholar 

  • Long BJ, Dunn GM, Bowman JS, Routley DG (1977) Relationship of Hydroxamic acid content in corn and resistance to the corn leaf aphid 1. Crop Sci 17(1):55–58

    Article  CAS  Google Scholar 

  • Manuwoto S, Scriber JM (1985a) Differential effects of nitrogen fertilization of three corn genotypes on biomass and nitrogen utilization by the southern armyworm. Spodoptera eridania. Agric Ecosyst Environ 14:25–40

    Article  CAS  Google Scholar 

  • Manuwoto S, Scriber JM (1985b) Consumption and utilization of experimentally altered corn by Southern armyworm: iron, nitrogen, and cyclic hydroxamates. J Chem Ecol 11(11):1469–1483

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015. https://doi.org/10.1105/tpc.7.7.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi AR, Raj S, Kanani P, Patel A, Narayanan S (2014) Analysis of differentially expressed genes involved in stevioside biosynthesis in cultures of Stevia rebaudiana Bertoni treated with steviol as an immediate precursor. J Plant Growth Regul 33(3):481–488

    Article  CAS  Google Scholar 

  • Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    CAS  PubMed  Google Scholar 

  • Muri EMF, Nieto MJ, Sindelar RD, Williamson JS (2002) Hydroxamic acids as pharmacological agents. Curr Med Chem 662:1631–1653. https://doi.org/10.2174/0929867023369402

    Article  Google Scholar 

  • Nautiyal CS, Chauhan PS, Das Gupta SM, Seem K, Varma A, Staddon W (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM11827 and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399. https://doi.org/10.1007/s11274-010-0312-z

    Article  Google Scholar 

  • Ngwene B, Andrade-Linares DR, Franken P (2013) Phosphate solubilization and plant growth promotion of the fungal root endophyte Piriformospora indica. In: Schneider C, Leifert C, Feldmann F (eds) Endophytes for plant protection: the state of the art. Deutsche Phytome dizinische Gesellschaft, Braunschweig, pp 192–193

    Google Scholar 

  • Pal PK, Kumar R, Guleria V, Mahajan M, Prasad R, Pathania V, Gill BS, Singh D, Chand G, Singh B, Singh RD (2015) Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biol 15(1):67. https://doi.org/10.1186/s12870-015-0457-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey D, Singh R, Chand D (2011) An improved bioprocess for the synthesis of acetohydroxamic acid using DTT (dithiothreitol) treated resting cells Bacillus sp. APB-6. Bioresour Technol 102:6579–6586. https://doi.org/10.1016/j.biortech.(2011).03.071

    Article  CAS  PubMed  Google Scholar 

  • Patanun O, Ueda M, Itouga M, Kato Y, Utsumi Y, Matsui A, Tanaka M, Utsumi C, Sakakibara H, Yoshida M, Narangajavana J, Seki M (2017) The histone deacetylase inhibitor suberoyl-anilide hydroxamic acid alleviates salinity stress in cassava. Front Plant Sci 7:2039. https://doi.org/10.3389/fpls.2016.02039

    Article  PubMed  PubMed Central  Google Scholar 

  • Pepeljnjak ST, Zorc BR, Butula I (2005) Antimicrobial activity of some hydroxamic acids. Acta Pharma 55(4):401–408

    CAS  Google Scholar 

  • PeÅ¡kan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122(4):465–477. https://doi.org/10.1111/j.1399-3054.2004.00424.x

    Article  CAS  Google Scholar 

  • Rajasekaran T, Giridhar P, Ravishankar GA (2007) Production of steviosides in ex vitro and in vitro grown Stevia rebaudiana Bertoni. J Sci Food Agric 87(3):420–424. https://doi.org/10.1002/jsfa.2713

    Article  CAS  Google Scholar 

  • Schäfer P, Khatabi B, Kogel KH (2007) Root cell death and systemic effects of Piriformospora indica: a study on mutualism. FEMS Microbiol Lett 275(1):1–7. https://doi.org/10.1111/j.1574-6968.2007.00848.x

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Sharma NN, Bhalla TC (2012) Biotransformation of acetamide to aceto-hydroxamic acid at bench scale using acyl transferase activity of amidase of Geobacillus pallidus BTP-5x MTCC 9225. Indian J Microbiol 52:76–82. https://doi.org/10.1007/s12088-011-0211-5

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmuller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeo domain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247. https://doi.org/10.1074/jbc.M500447200

    Article  CAS  PubMed  Google Scholar 

  • Swanson SM, Mahady GB, Beecher CW (1992) Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell Tissue Organ Cult 28(2):151–157

    Article  CAS  Google Scholar 

  • Tashackori H, Sharifi M, Chashmi NA, Safaie N, Behmanesh M (2016) Induced-differential changes on lignan and phenolic acid compounds in Linum album hairy roots by fungal extract of Piriformospora indica. Plant Cell Tissue Organ Cult 127(1):187–194. https://doi.org/10.1007/s11240-016-1041-2

    Article  CAS  Google Scholar 

  • Thackray DJ, Wratten SD, Edwards PJ, Niemeyer HM (1990) Hydroxamic acids – Potential resistance factors in wheat against the cereal aphids Sitohion acenae and Rhopalosiphum padi. Proceedings of brighton pest control conference, pests and diseases, pp 215–220

    Google Scholar 

  • Thompson L, Slife FW, Butler HS (1970) Environmental influence on the tolerance of corn to atrazine. Weed Sci 18(4):509–514

    CAS  Google Scholar 

  • Vahabi K, Camehl I, Sherameti I, Oelmüller R (2013) Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. Plant Signal Behav 8(11):e26301

    Article  Google Scholar 

  • Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmüller R (2015) The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC Plant Biol 15(1):58

    Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agribiol Res 1(2):117–131

    Article  Google Scholar 

  • Varma A, Singh A, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Fungal Associations. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol 9. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-662-07334-6_8

    Chapter  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von-Wettstein D, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391. https://doi.org/10.1073/pnas.0504423102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Yi T, Huntington KM, Chaudhury C, Pei D (2000) Identification of a potent peptide deformylase inhibitor from a rationally designed combinatorial library. J Comb Chem 2:650–657. https://doi.org/10.1021/cc000036n

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285(34):26532–26544. https://doi.org/10.1074/jbc.M110.111021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada A, Saitoh T, Mimura T, Ozeki Y (2002) Expression of mangrove allene oxidecyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant Cell Physiol 43:903–910. https://doi.org/10.1093/pcp/pcf108

    Article  CAS  PubMed  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68. https://doi.org/10.1007/s12892-009-0060-5

    Article  Google Scholar 

  • Yuan Z, Dai C, Chen L (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271

    CAS  Google Scholar 

  • Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G (2014) A wheat allene oxidecyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164(2):1068–1076. https://doi.org/10.1104/pp.113.227595

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7(10):e1002290

    Article  CAS  Google Scholar 

  • Zuiiiga GE, Copaja SV, Bravo HR, Argandoiia VH (1990) Hydroxamic acids accumulation by wheat callus. Phytochemistry 29:2139–2141. https://doi.org/10.1016/0031-9422(90)83023-T

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B.N., Hidangmayum, A., Singh, A., Shera, S.S., Dwivedi, P. (2019). Synthesis and Application of Hydroxamic Acid: A Key Secondary Metabolite of Piriformospora indica. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_18

Download citation

Publish with us

Policies and ethics