Skip to main content

Fundamental Science of Gas Storage

  • Chapter
  • First Online:
Nanoporous Materials for Gas Storage

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

High-pressure adsorption measurement of supercritical gas needs accurate particle density which should be obtained by high-pressure He buoyancy measurement. As the surface excess mass adsorption is not greatly larger than the bulk gas contribution in the adsorbed layer, the absolute adsorption amount containing the bulk gas contribution in the adsorbed layer must be used for thermodynamic analysis and evaluation of the storage amount. The plot of the compression factor of adsorbed layer against the inverse of the average adsorbed layer density provides the Henry, virial, and cooperative types, giving information on the strength of the gas-solid interaction. The nanoporous material showing the cooperative type is promising for the storage of the target gas. Two factors of the strength of the gas-solid interaction and the surface area predict that nanopores consisting of narrow belt walls are promising for gas storage. Molecular simulation of methane in the graphitic pore over the wide temperature range from 120 to 300 K indicates an upward shift of the critical temperature of methane adsorbed in the graphitic pore. The heat of adsorption of methane in the graphitic pore without the heat-releasing mechanism elevates the temperature of the graphitic carbon by 70 K, decreasing the adsorption amount of methane by 30%; an efficient heat releasing mechanism must be installed in the storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Google Scholar 

  2. Murata K, El-Merraoui M, Kaneko K (2001) A new determination method of absolute adsorption isotherm of supercritical gases under high pressure with a special relevance to density-functional theory study. J Chem Phys 114(9):4196–4205. https://doi.org/10.1063/1.1344926

    Article  Google Scholar 

  3. Murata K, Kaneko K (2000) Nano-range interfacial layer upon high-pressure adsorption of supercritical gases. Chem Phys Lett 321(5):342–348. https://doi.org/10.1016/S0009-2614(00)00367-5

    Article  Google Scholar 

  4. Murata K, Kaneko K, Kanoh H, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J Phys Chem B 106(43):11132–11138. https://doi.org/10.1021/jp020583u

    Article  Google Scholar 

  5. Kaneko K, Shimizu K, Suzuki T (1992) Intrapore field-dependent micropore filling of supercritical N2 in slit-shaped micropores. J Chem Phys 97(11):8705–8711. https://doi.org/10.1063/1.463389

    Article  Google Scholar 

  6. Ruike M, Kasu T, Setoyama N, Suzuki T, Kaneko K (1994) Inaccessible pore characterization of less-crystalline microporous solids. J Phys Chem 98(38):9594–9600. https://doi.org/10.1021/j100089a038

    Article  Google Scholar 

  7. Noguchi H, Kondo A, Kajiro H, Kanoh H, Kaneko K (2006) Probe molecule-dependent particle density and its effect on the supercritical gas adsorption isotherm of nanoporous Cu complex crystals. Adsorpt Sci Technol 24(7):595–600. https://doi.org/10.1260/026361706780810258

    Article  Google Scholar 

  8. Donohue M, Aranovich G (1999) A new classification of isotherms for Gibbs adsorption of gases on solids. Fluid Phase Equilib 158–160:557–563. https://doi.org/10.1016/S0378-3812(99)00074-6

    Article  Google Scholar 

  9. Myers AL, Monson PA (2014) Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis. Adsorption 20(4):591–622. https://doi.org/10.1007/s10450-014-9604-1

    Article  Google Scholar 

  10. Zhou L, Bai S, Su W, Yang J, Zhou Y (2003) Comparative study of the excess versus absolute adsorption of CO2 on superactivated carbon for the near-critical region. Langmuir 19(7):2683–2690. https://doi.org/10.1021/la020682z

    Article  Google Scholar 

  11. Keller JU, Zimmermann W, Schein E (2003) Determination of absolute gas adsorption isotherms by combined calorimetric and dielectric measurements. Adsorption 9(2):177–188. https://doi.org/10.1023/A:1024249628239

    Article  Google Scholar 

  12. Phadungbut P, Fan C, Do DD, Nicholson D, Tangsathitkulchai C (2015) Determination of absolute adsorption for argon on flat surfaces under sub- and supercritical conditions. Colloids Surf A Physicochem Eng Asp 480:19–27. https://doi.org/10.1016/j.colsurfa.2015.04.011

    Article  Google Scholar 

  13. Brandani S, Mangano E, Sarkisov L (2016) Net, excess and absolute adsorption and adsorption of helium. Adsorption 22(2):261–276. https://doi.org/10.1007/s10450-016-9766-0

    Article  Google Scholar 

  14. Murata K, Miyawaki J, Kaneko K (2002) A simple determination method of the absolute adsorbed amount for high pressure gas adsorption. Carbon 40(3):425–428. https://doi.org/10.1016/S0008-6223(01)00126-9

    Article  Google Scholar 

  15. Murata K, Yudasaka M, Iijima S, El-Merraoui M, Kaneko K (2002) Classification of supercritical gas adsorption isotherms based on fluid-fluid interaction. J Appl Phys 91(12):10227–10229. https://doi.org/10.1063/1.1479474

    Article  Google Scholar 

  16. Murata K, Kaneko K (2001) The general equation of supercritical gas adsorption isotherm. J Phys Chem B 105(36):8498–8503. https://doi.org/10.1021/jp0107816

    Article  Google Scholar 

  17. Tanaka H, Kanoh H, El-Merraoui M, Steele WA, Yudasaka M, Iijima S, Kaneko K (2004) Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns. J Phys Chem B 108(45):17457–17465. https://doi.org/10.1021/jp048603a

    Article  Google Scholar 

  18. Beenakker JJM, Borman VD, Krylov SY (1995) Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving. Chem Phys Lett 232(4):379–382. https://doi.org/10.1016/0009-2614(94)01372-3

    Article  Google Scholar 

  19. Wang Q, Challa SR, Sholl DS, Johnson JK (1999) Quantum sieving in carbon nanotubes and zeolites. Phys Rev Lett 82(5):956–959. https://doi.org/10.1103/PhysRevLett.82.956

    Article  Google Scholar 

  20. Niimura S, Fujimori T, Minami D, Hattori Y, Abrams L, Corbin D, Hata K, Kaneko K (2012) Dynamic quantum molecular sieving separation of D2 from H2-D2 mixture with nanoporous materials. J Am Chem Soc 134(45):18483–18486. https://doi.org/10.1021/ja305809u

    Article  Google Scholar 

  21. Hiraide S, Tanaka H, Miyahara MT (2016) Understanding gate adsorption behaviour of CO2 on elastic layer-structured metal-organic framework-11. Dalton Trans 45(10):4193–4202. https://doi.org/10.1039/C5DT03476K

    Article  Google Scholar 

  22. Kanoh H, Kondo A, Noguchi H, Kajiro H, Tohdoh A, Hattori Y, Xu WC, Inoue M, Sugiura T, Morita K et al (2009) Elastic layer-structured metal organic frameworks (ELMs). J Colloid Interface Sci 334(1):1–7. https://doi.org/10.1016/j.jcis.2009.03.020

    Article  Google Scholar 

  23. Kondo A, Noguchi H, Ohnishi S, Kajiro H, Tohdoh A, Hattori Y, Xu WC, Tanaka H, Kanoh H, Kaneko K (2006) Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules. Nano Lett 6(11):2581–2584. https://doi.org/10.1021/nl062032b

    Article  Google Scholar 

  24. Nicholson D, Parsonage NG (1982) Computer simulation and the statistical mechanics of adsorption. Academic Press, google-Books-ID: 7HInFGsTVFwC

    Google Scholar 

  25. Ohba T (2014) Size-dependent water structures in carbon nanotubes. Angew Chem Int Ed 53(31):8032–8036. https://doi.org/10.1002/anie.201403839

    Article  Google Scholar 

  26. Futamura R, Iiyama T, Takasaki Y, Gogotsi Y, Biggs MJ, Salanne M, Sgalini J, Simon P, Kaneko K (2017) Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores. Nat Mater 16(12):1225–1232. https://doi.org/10.1038/nmat4974

    Article  Google Scholar 

  27. Rigby M (1986) The forces between molecules. Clarendon Press, google-Books-ID: ckdCAQAAIAAJ

    Google Scholar 

  28. Pace EL (1967) Adsorption thermodynamics and experimental measurement, vol 1, chap 4. Dekker, New York, pp 105–110

    Google Scholar 

  29. Ross S, Olivier JP (1964) On physical adsorption. Interscience Publishers, New York. google-Books-ID: DRBRAAAAMAAJ

    Google Scholar 

  30. Fowler (1967) Statistical mechanics. CUP Archive, google-Books-ID: qLE8AAAAIAAJ

    Google Scholar 

  31. Hartl M, Gillis RC, Daemen L, Olds DP, Page K, Carlson S, Cheng Y, Hügle T, Iverson EB, Ramirez-Cuesta AJ et al (2016) Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel. Phys Chem Chem Phys 18(26):17281–17293. https://doi.org/10.1039/C6CP01154C

    Article  Google Scholar 

Download references

Acknowledgements

This is supported by the Grant-in-Aid for Scientific Research (B) (17H03039) and the OPERA project from JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohba, T., Vallejos-Burgos, F., Kaneko, K. (2019). Fundamental Science of Gas Storage. In: Kaneko, K., Rodríguez-Reinoso, F. (eds) Nanoporous Materials for Gas Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3504-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3504-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3503-7

  • Online ISBN: 978-981-13-3504-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics