Skip to main content

Nutrition and the Neurologic Patient

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Acute neurological injury is known to be associated with a catabolic state which can be associated with complications such as secondary brain injury, hospital-acquired infections, multiple organ dysfunction, and prolonged mechanical ventilation, all of which can impair recovery. Additionally, in acute brain injuries, there is often associated dysphagia, prolonged partial or complete immobilization, and other metabolic pathways that need to be considered when assessing nutritional status and devising targeted therapies. Therefore, nutrition is not only for support of metabolic processes but for therapy to attenuate catabolic state, oxidative cellular injury, and immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Preiser J-C, Ichai C, Orban J-C, Groeneveld ABJ. Metabolic response to the stress of critical illness. Br J Anaesth. 2014;113(6):945–54.

    Article  CAS  Google Scholar 

  2. Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:1–18.

    Article  Google Scholar 

  3. Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol. 2011;95(3):352–72.

    Article  CAS  Google Scholar 

  4. Prins ML. Cerebral metabolic adaptation and ketone metabolism after brain injury. J Cereb Blood Flow Metab. 2008;28(1):1–16. https://doi.org/10.1038/sj.jcbfm.9600543.

    Article  CAS  PubMed  Google Scholar 

  5. Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care. 2012;16(5):R203.

    Article  Google Scholar 

  6. Abdelmalik PA, Dempsey S, Ziai W. Nutritional and bioenergetic considerations in critically ill patients with acute neurological injury. Neurocrit Care. 2017;27(2):276–86.

    Article  CAS  Google Scholar 

  7. Falcão de Arruda IS, de Aguilar-Nascimento JE. Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond). 2004;106:287–92.

    Article  Google Scholar 

  8. Hanafy KA, Selim MH. Antioxidant strategies in Neurocritical care. Neurotherapeutics. 2012;9(1):44–55. https://doi.org/10.1007/s13311-011-0085-6.

    Article  CAS  PubMed  Google Scholar 

  9. Aquilani R, Sessarego P, Iadarola P, Barbieri A, Boschi F. Nutrition for brain recovery after ischemic stroke: an added value to rehabilitation. Nutr Clin Pract. 2011;26(3):339–45. https://doi.org/10.1177/0884533611405793.

    Article  PubMed  Google Scholar 

  10. Sundman MH, Chen N-K, Subbian V, Chou Y-H. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44. https://doi.org/10.1016/j.bbi.2017.05.009.

    Article  CAS  PubMed  Google Scholar 

  11. Winek K, Dirnagl U, Meisel A. The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics. 2016;13(4):762–74. https://doi.org/10.1007/s13311-016-0475-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohanlon C, Dowsett J, Smyth N. Nutrition assessment of the intensive care unit patient. Top Clin Nutr. 2015;30(1):47–70.

    Article  Google Scholar 

  13. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40(2):159–211.

    Article  CAS  Google Scholar 

  14. Schlein KM, Coulter SP. Best practices for determining resting energy expenditure in critically ill adults. Nutr Clin Pract. 2014;29(1):44–55.

    Article  Google Scholar 

  15. Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15:R268.

    Article  Google Scholar 

  16. Badjatia N, Vespa P. Monitoring nutrition and glucose in acute brain injury. Neurocrit Care. 2014;21(2):159–67.

    Article  CAS  Google Scholar 

  17. Puthucheary ZA, Phadke R, Rawal J, et al. Qualitative ultrasound in acute critical illness muscle wasting. Crit Care Med. 2015;43:1603–11.

    Article  Google Scholar 

  18. Doig GS, Heighes PT, Simpson F, Sweetman EA, Davies AR. Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials. Intensive Care Med. 2009;35(12):2018–27.

    Article  CAS  Google Scholar 

  19. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29(12):2264–70.

    Article  CAS  Google Scholar 

  20. Wells DL. Provision of enteral nutrition during vasopressor therapy for hemodynamic instability: an evidence-based review. Nutr Clin Pract. 2012;27(4):521–6.

    Article  Google Scholar 

  21. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001;74(4):534–42.

    Article  CAS  Google Scholar 

  22. Borzotta AP, Pennings J, Papasadero B, et al. Enteral versus parenteral nutrition after severe closed head injury. J Trauma. 1994;37(3):459–68.

    Article  CAS  Google Scholar 

  23. Scrimgeour AG, Condlin ML. Nutritional treatment for traumatic brain injury. J Neurotrauma. 2014;31(11):989–99. https://doi.org/10.1089/neu.2013.3234.

    Article  PubMed  Google Scholar 

  24. Young B, Ott L, Norton J, et al. Metabolic and nutritional sequelae in the non-steroid treated head injury patient. Neurosurgery. 1985;17(5):784–91.

    Article  CAS  Google Scholar 

  25. Foley N, Marshall S, Pikul J, Salter K, Teasell R. Hypermetabolism following moderate to severe traumatic acute brain injury: a systematic review. J Neurotrauma. 2008;25:1415–31.

    Article  Google Scholar 

  26. Clifton GL, Robertson CS, Grossman RG, Hodge S, Foltz R, Garza C. The metabolic response to severe head injury. J Neurosurg. 1984;60(4):687–96.

    Article  CAS  Google Scholar 

  27. Wang X, Dong Y, Han X, Qi X-Q, Huang C-G, Hou L-J. Nutritional support for patients sustaining traumatic brain injury: a systematic review and meta-analysis of prospective studies. PLoS One. 2013;8(3):e58838.

    Article  CAS  Google Scholar 

  28. Härtl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg. 2008;109(1):50–6.

    Article  Google Scholar 

  29. Ritter AM, Robertson CS, Goodman JC, Contant CF, Grossman RG. Evaluation of a carbohydrate-free diet for patients with severe head injury. J Neurotrauma. 1996;13(8):473–85.

    Article  CAS  Google Scholar 

  30. Kearns PJ, Thompson JD, Werner PC, Pipp TL, Wilmot CB. Nutritional and metabolic response to acute spinal-cord injury. JPEN J Parenter Enteral Nutr. 1992;16(1):11–5.

    Article  CAS  Google Scholar 

  31. Rodriguez DJ, Benzel EC, Clevenger FW. The metabolic response to spinal cord injury. Spinal Cord. 1997;35(9):599–604.

    Article  CAS  Google Scholar 

  32. Sabbouh T, Torbey MT. Malnutrition in stroke patients: risk factors, assessment, and management. Neurocrit Care. 2017;29(3):374–84. https://doi.org/10.1007/s12028-017-0436-1.

    Article  Google Scholar 

  33. Dennis M. Routine oral nutritional supplementation for stroke patients in hospital (FOOD): a multicentre randomised controlled trial. Lancet. 2005;365(9461):755–63.

    Article  CAS  Google Scholar 

  34. Dennis M. Effect of timing and method of enteral tube feeding for dysphagic stroke patients (FOOD): a multicentre randomised controlled trial. Lancet. 2005;365(9461):764–72.

    Article  CAS  Google Scholar 

  35. Dennis M. Poor nutritional status on admission predicts poor outcomes after stroke observational data from the FOOD trial. Stroke. 2003;34(6):1450–6.

    Article  Google Scholar 

  36. Badjatia N, Monahan A, Carpenter A, et al. Inflammation, negative nitrogen balance, and outcome after aneurysmal subarachnoid hemorrhage. Neurology. 2015;84(7):680–7.

    Article  CAS  Google Scholar 

  37. Kasuya H, Kawashima A, Namiki K, Shimizu T, Takakura K. Metabolic profiles of patients with subarachnoid hemorrhage treated by early surgery. Neurosurgery. 1998;42(6):1265–8.

    Article  Google Scholar 

  38. Badjatia N, Seres D, Carpenter A, et al. Free fatty acids and delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2012;43(3):691–6.

    Article  CAS  Google Scholar 

  39. Yoneda H, Shirao S, Nakagawara J, Ogasawara K, Tominaga T, Suzuki M. A prospective, multicenter, randomized study of the efficacy of eicosapentaenoic acid for cerebral vasospasm: the EVAS study. World Neurosurg. 2014;81(2):309–15.

    Article  Google Scholar 

  40. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29(3):648–53.

    Article  CAS  Google Scholar 

  41. Walsh TS, Wigmore SJ, Hopton P, Richardson R, Lee A. Energy expenditure in acetaminophen-induced fulminant hepatic failure. Crit Care Med. 2000;28(3):649–54.

    Article  CAS  Google Scholar 

  42. Schneeweiss B, Pammer J, Ratheiser K, et al. Energy metabolism in acute hepatic failure. Gastroenterology. 1993;105(5):1515–21.

    Article  CAS  Google Scholar 

  43. Bémeur C, Desjardins P, Butterworth RF. Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J Nutr Metab. 2010;2010:489823.

    Article  Google Scholar 

  44. Sobotka L, Schneider SM, Berner YN, et al. ESPEN guidelines on parenteral nutrition: geriatrics. Clin Nutr. 2009;28(4):461–6.

    Article  CAS  Google Scholar 

  45. Oshima T, Furukawa Y, Kobayashi M, Sato Y, Nihei A, Oda S. Fulfilling caloric demands according to indirect calorimetry may be beneficial for post cardiac arrest patients under therapeutic hypothermia. Resuscitation. 2015;88:81–5.

    Article  Google Scholar 

  46. Williams ML, Nolan JP. Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation. 2014;85(11):1469–72.

    Article  Google Scholar 

  47. Dobak S, Rincon F. “Cool” topic: feeding during moderate hypothermia after intracranial hemorrhage. J Parenter Enter Nutr. 2017;41(7):1125–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Badjatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badjatia, N., Patel, N., Tavarez, T. (2019). Nutrition and the Neurologic Patient. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3390-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3390-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3389-7

  • Online ISBN: 978-981-13-3390-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics