Skip to main content

Strategies in the Genetic Breeding of Jatropha curcas for Biofuel Production in Brazil

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

The global challenge is to increase food production in a sustainable way, given that most of the energy used comes from fossil fuels, which causes unsustainable damage to the environment, such as the greenhouse gas emissions. Aiming at diversifying the Brazilian energy matrix, the use of biofuels emerged as a promising alternative. In this context, it is important to emphasize that soybean sustains most of the biodiesel and biokerosene markets (79.1%), so it is highly dependent on this crop, which constitutes a threat concerning economical security issues. In this way, it is the need of the hour to invest in diversification of potential raw materials for biofuel production, such as Jatropha, which has been identified to present a high content of quality oil suitable for biofuels. However, the seed and oil yields per hectare of Jatropha are still too low to be economically sustainable for farmers. This situation requires the development of improved cultivars. Several research efforts with this crop have already been initiated in Brazil. However, there is still much to be done in order to bring Jatropha to the level of a commercial crop able to deliver a suitable return on farming. Considering that it presents long breeding cycles, it is important to adopt strategies for increasing the selection efficiency and genetic gain, as well as for decreasing the cultivar generation time. In view of the considerations given above, the purpose of this chapter is to integrate the information available in the literature and to report on the most promising approaches of genetics and biotechnology for the selective breeding of improved Jatropha cultivars in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achten WM, Nielsen LR, Aerts R et al (2010) Towards domestication of Jatropha curcas. Biofuels 1(1):91–107

    Article  CAS  Google Scholar 

  • Aguilera-Cauich EA, Pérez-Brito D, Yabur AN et al (2015) Assessment of phenotypic diversity and agronomic contrast in American accessions of Jatropha curcas L. Ind Crop Prod 77:1001–1003

    Article  Google Scholar 

  • Alves AA, Laviola BG, Formighieri EF et al (2015) Perennial plants for biofuel production: bridging genomics and field research. Biotechnol J 10(4):505–507

    Article  CAS  PubMed  Google Scholar 

  • Anggraeni TDA, Satyawan D, Kang YJ et al (2018) Genetic diversity of Jatropha curcas collections from different islands in Indonesia. Plant Genet Resour 1–9

    Google Scholar 

  • ANP (2017) http://www.tbpetroleum.com.br/news/anp-publishes-consolidated-data-for-the-oil-natural-gas-and-biofuels-sector-in-2017/

  • Azevedo CF, de Resende MDV, e Silva FF et al (2015) Ridge, Lasso and Bayesian additive-dominance genomic models. BMC Genet 16(1):1

    Article  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome wide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090

    Article  Google Scholar 

  • Bhering L, Cruz C, Laviola B (2011) Biometria aplicada ao melhoramento de espécies alternativas para produção de biodiesel. In: Cardoso DL, da Luz LN, Pereira TNS (eds) Estratégias em melhoramento de plantas. Arka, Viçosa, pp 90–129

    Google Scholar 

  • Borém A, Miranda GV (2013) Melhoramento de Plantas, vol 6. UFV, Viçosa

    Google Scholar 

  • Carvalho CR, Clarindo WR, Praca MM et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174(6):613–617

    Article  CAS  Google Scholar 

  • Cavalcanti JJV, Resende MDV, FHCd S et al (2012) Simultaneous prediction of the effects of molecular markers and genome wide selection in cashew. Rev Bras Frutic 34(3):840–846

    Article  Google Scholar 

  • Changwei L, Kun L, You C et al (2007) Pollen viability, stigma receptivity and reproductive features of Jatropha curcas L.(Euphorbiaceae). Acta Bot Bor Occ Sin 27(10):1994–2001

    Google Scholar 

  • Cremonez PA, Feroldi M, Nadaleti WC et al (2015) Biodiesel production in Brazil: current scenario and perspectives. Renew Sust Energ Rev 42:415–428

    Article  Google Scholar 

  • Crossa J, de Los Campos G, Pérez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3(10):e3395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B et al (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185(3):1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Los Campos G, Gianola D, Rosa G (2009a) Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci 87(6):1883–1887

    Article  PubMed  CAS  Google Scholar 

  • De Los Campos G, Naya H, Gianola D et al (2009b) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182(1):375–385

    Article  CAS  Google Scholar 

  • de Oliveira EJ, de Resende MDV, Santos VD et al (2012) Genome-wide selection in cassava. Euphytica 187(2):263–276. https://doi.org/10.1007/s10681-012-0722-0

    Article  CAS  Google Scholar 

  • Dharma S, Masjuki H, Ong HC et al (2016) Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Convers Manag 115:178–190

    Article  CAS  Google Scholar 

  • Divakara B, Upadhyaya H, Wani S et al (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87(3):732–742

    Article  CAS  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4(3):250–255

    Article  Google Scholar 

  • Falconer D, Mackay T (1996) Introduction to quantitative genetics. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Goddard ME, Hayes B (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Resende MD (2011) Genomic selection in forest tree breeding. Tree Genet Genome 7(2):241–255

    Article  Google Scholar 

  • Habier D, Fernando R, Dekkers J (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177(4):2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K et al (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinforma 12(1):1

    Article  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda Filho JD (2010) Quantitative genetics in maize breeding, vol 6. Springer, New York

    Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ et al (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • Horbach MA, Malavasi UC, de Matos Malavasi M (2014) Propagation methods for physic nut (Jatropha curcas). Adv For Sci 1(1):53–57

    Google Scholar 

  • Hull FH (1945) Recurrent selection for specific combining ability in corn 1. Agron J 37(2):134–145

    Article  Google Scholar 

  • Iwata H, Hayashi T, Terakami S et al (2013) Genomic prediction of trait segregation in a progeny population: a case study of Japanese pear (Pyrus pyrifolia). BMC Genet 14(1):1

    Article  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D et al (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28(1):1–10

    Article  CAS  Google Scholar 

  • Kumar S, Chagné D, Bink MC et al (2012) Genomic selection for fruit quality traits in apple (Malus× domestica Borkh.). PLoS One 7(5):e36674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Y, Ringenberg J, Depuru SS et al (2016) Wind energy: trends and enabling technologies. Renew Sust Energ Rev 53:209–224

    Article  Google Scholar 

  • Laviola B, Rocha RB, Kobayashi AK et al (2010a) Genetic improvement of Jatropha for biodiesel production. Ceiba 51(1):1–10. https://doi.org/10.5377/ceiba.v51i1.640

    Article  Google Scholar 

  • Laviola BG, Rosado TB, Bhering LL et al (2010b) Genetic parameters and variability in physic nut accessions during early developmental stages. Pesq Agrop Bras 45(10):1117–1123

    Article  Google Scholar 

  • Laviola BG, dos Anjos SD, Juhász ACP et al (2014) Desempenho agronômico e ganho genético pela seleção de pinhão-manso em três regiões do Brasil. Pesq Agrop Bras 49(5):356–363

    Article  Google Scholar 

  • Limón J, Rodriguez MA, Sánchez J et al (2012) Metodología bayesiana para la optimización simultánea de múltiples respuestas. Inf Tecnol 23(2):151–166 Spanish

    Article  Google Scholar 

  • Lucena AMA, Vasconcelos GCL, de Lucena Medeiros KAA et al (2014) Características morfológicas de peças reprodutivas de acessos de Jatropha curcas L. Scientia Plena 10(4):1–9

    Google Scholar 

  • Maghuly F, Jankowicz-Cieslak J, Pabinger S et al (2015) Geographic origin is not supported by the genetic variability found in a large living collection of Jatropha curcas with accessions from three continents. Biotechnol J 10(4):536–551

    Article  CAS  PubMed  Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genome wide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53(1):58–66

    Article  CAS  Google Scholar 

  • Meuwissen TH (2007) Genomic selection: marker assisted selection on a genome wide scale. J Anim Breed Genet 124(6):321–322

    Article  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moniruzzaman M, Yaakob Z, Khatun R (2016) Biotechnology for Jatropha improvement: a worthy exploration. Renew Sust Energ Rev 54:1262–1277

    Article  CAS  Google Scholar 

  • Montes JM, Melchinger AE (2016) Domestication and breeding of Jatropha curcas L. Trends Plant Sci 21(12):1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122

    Article  CAS  PubMed  Google Scholar 

  • Paramathma M, Venkatachalam (2007) Jatropha improvement, management and production of biodiesel. Centre of excellence in biofuels. Agricultural Engineering College and Research Institute, Coimbatore

    Google Scholar 

  • Peixoto LA, Laviola BG, Bhering LL et al (2016) Oil content increase and toxicity reduction in Jatropha seeds through family selection. Ind Crop Prod 80:70–76

    Article  CAS  Google Scholar 

  • Peixoto LA, Laviola BG, Alves AA et al (2017) Breeding Jatropha curcas by genomic selection: a pilot assessment of the accuracy of predictive models. PLoS One 12(3):e0173368

    Article  CAS  Google Scholar 

  • Punia M (2007) Current status of research and development on Jatropha (Jatropha curcas) for sustainable biofuel production in India. In: USDA global conference on agricultural biofuels: research and economics. pp 20–22

    Google Scholar 

  • Ramalho M, Abreu AF, Jd S et al (2012) Aplicações da genética quantitativa no melhoramento de plantas autógamas. UFLA, Portuguese, Lavras

    Google Scholar 

  • Resende MDV (2002) Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa, Brasília, p 975 ISBN-10:8573831618, Portuguese

    Google Scholar 

  • Resende MD (2007) SELEGEN-REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Embrapa, Brasília 359 p, ISBN-10: 8589281167, Portuguese

    Google Scholar 

  • Resende MDV, Lopes PS, Silva RL et al (2008) Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq Flores Bras 56:63–77

    Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP et al (2012a) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194(1):116–128. https://doi.org/10.1111/j.1469-8137.2011.04038.x

    Article  PubMed  Google Scholar 

  • Resende MFR, Munoz P, Acosta JJ et al (2012b) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193(3):617–624

    Article  PubMed  Google Scholar 

  • Resende M, Silva F, Azevedo C (2014) Estatística matemática, biométrica e computacional. Suprema, Visconde do Rio Branco 881 p

    Google Scholar 

  • Rocha RB, Ramalho AR, Teixeira AL et al (2012) Eficiência da seleção para incremento do teor de óleo do pinhão-manso. Pesq Flores Bras 47(1):44–50

    Article  Google Scholar 

  • Rosado TB, Laviola BG, Faria DA et al (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50(6):2372–2382

    Article  CAS  Google Scholar 

  • Sanou H, Angulo-Escalante MA, Martínez-Herrera J et al (2015) Loss of genetic diversity of Jatropha curcas L. through domestication: implications for its genetic improvement. Crop Sci 55(2):749–759

    Article  CAS  Google Scholar 

  • Santos D, Ferreira J, Pasqual M et al (2016) Population structure of Jatropha and its implication for the breeding program. Genet Mol Res 15(1)

    Google Scholar 

  • Silitonga A, Atabani A, Mahlia T et al (2011) A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renew Sust Energ Rev 15(8):3733–3756

    Article  CAS  Google Scholar 

  • Silva M, Peternelli L, Nascimento M et al (2013) Modelos mistos na seleção de famílias de cana-de-açúcar aparentadas sob o enfoque clássico e bayesiano. Rev Bras Biomet 31:1–12

    Google Scholar 

  • Soontornchainaksaeng P, Jenjittikul T (2003) Karyology of Jatropha (Euphorbiaceae) in Thailand. Thai For Bull 31:105–112

    Google Scholar 

  • Spinelli VM, Rocha RB, Ramalho AR (2010) Componentes primários e secundários do rendimento de óleo de pinhão-manso. Ciênc Rural 40(8):1752–1758

    Article  Google Scholar 

  • Surwenshi A, Kumar V, Shanwad U (2011) Critical review of diversity in Jatropha curcas for crop improvement: a candidate biodiesel crop. Res J Agric Sci 2(2):193–198

    Google Scholar 

  • Takase M, Zhao T, Zhang M (2015) An expatiate review of neem, Jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sust Energ Rev 43:495–520

    Article  CAS  Google Scholar 

  • Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31(8):569–575

    Article  CAS  Google Scholar 

  • Trebbi D, Papazoglou EG, Saadaoui E et al (2015) Assessment of genetic diversity in different accessions of Jatropha curcas. Ind Crop Prod 75:35–39

    Article  Google Scholar 

  • Viana AP, Resende Md (2014) Genética Quantitaiva no Melhoramento de Fruteiras, vol 1

    Google Scholar 

  • Viana AP, MDVd R, Riaz S et al (2016) Genome selection in fruit breeding: application to table grapes. Sci Agric 73(2):142–149

    Article  Google Scholar 

  • Weyhrich RA, Lamkey KR, Hallauer AR (1998) Responses to seven methods of recurrent selection in the BS11 maize population. Crop Sci 38(2):308–321

    Article  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116(6):815–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Guo X, Liu B, Tang L, Chen F (2011) Genetic diversity and genetic relationship of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotechnol 10(15):2825–2832

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Galvêas Laviola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laviola, B.G., Rodrigues, E.V., Ribeiro, L.P., Silva, L.A., de Azevedo Peixoto, L., Bhering, L.L. (2019). Strategies in the Genetic Breeding of Jatropha curcas for Biofuel Production in Brazil. In: Mulpuri, S., Carels, N., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, Singapore. https://doi.org/10.1007/978-981-13-3104-6_3

Download citation

Publish with us

Policies and ethics