Skip to main content

Development and Maldevelopment of the Female Reproductive System

  • Chapter
  • First Online:
Gynecologic and Obstetric Pathology, Volume 1

Abstract

The female reproductive tract has its embryological origins in the paired Müllerian ducts and their fusion to each other and the urogenital sinus. The Müllerian ducts give rise to the oviducts, uterus, and cervix, while the urogenital sinus forms the vagina and external genitalia. Primordial germ cells formed near the yolk sac migrate to colonize the gonadal ridge, where in females interactions between germ and somatic cells coalesce to create the functional ovarian units known as follicles.

A classical morphologic understanding of the embryology of these structures has served as the foundation for a general understanding of myriad conditions due to maldevelopment or malignant transformation. Increasingly, the molecular underpinnings of these complex underlying developmental transformations are being revealed, yielding deeper insights into the biological basis of female reproductive tract disease pathophysiology and also providing many useful markers, such as Sall4, Foxl2, Wt1, and Pax8, routinely used in clinical practice. In some cases, Müllerian maldevelopment syndromes such as Müllerian agenesis are now known to be caused by mutations in the genes encoding factors required for Müllerian duct development.

The once far-fetched idea that epithelial cells of the oviduct—not the ovary itself—are the origin of most “ovarian” carcinomas now has universal acceptance. Female reproductive tract malignancies of the cervix, uterus, and ovary recently believed to have disparate cellular/embryologic origins are now understood to have a shared origin in the epithelial lining of the Müllerian ducts. This insight rationalizes many prior observations, for example, that the diverse tumor histotypes common to the cervix, endometrium, or tubo-ovarian complex are encountered across each site. This chapter summarizes our understanding of female gonadal and reproductive tract development, with an emphasis on morphologic and molecular aspects that currently appear most relevant to disease pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dansereau DA, Lasko P. The development of germline stem cells in Drosophila. Methods Mol Biol. 2008;450:3–26. https://doi.org/10.1007/978-1-60327-214-8_1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar DL, DeFalco T. Of mice and men: in vivo and in vitro studies of primordial germ cell specification. Semin Reprod Med. 2017;35(2):139–46. https://doi.org/10.1055/s-0037-1599085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Felici M. Origin, migration, and proliferation of human primordial germ cells. In: Coticchio G, Albertini DF, De Santis L, editors. Oogenesis. London: Springer; 2013. p. 19–38. https://doi.org/10.1007/978-0-85729-826-3.

    Chapter  Google Scholar 

  4. McKay DG, Hertig AT, Adams EC, Danziger S. Histochemical observations on the germ cells of human embryos. Anat Rec. 1953;117(2):201–19.

    Article  CAS  PubMed  Google Scholar 

  5. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP. The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci U S A. 2000;97(17):9585–90. https://doi.org/10.1073/pnas.160274797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Felici M. Regulation of primordial germ cell development in the mouse. Int J Dev Biol. 2000;44(6):575–80.

    PubMed  Google Scholar 

  7. Mollgard K, Jespersen A, Lutterodt MC, Yding Andersen C, Hoyer PE, Byskov AG. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge. Mol Hum Reprod. 2010;16(9):621–31. https://doi.org/10.1093/molehr/gaq052.

    Article  CAS  PubMed  Google Scholar 

  8. Eildermann K, Aeckerle N, Debowski K, Godmann M, Christiansen H, Heistermann M, Schweyer S, Bergmann M, Kliesch S, Gromoll J, Ehmcke J, Schlatt S, Behr R. Developmental expression of the pluripotency factor sal-like protein 4 in the monkey, human and mouse testis: restriction to premeiotic germ cells. Cells Tissues Organs. 2012;196(3):206–20. https://doi.org/10.1159/000335031.

    Article  CAS  PubMed  Google Scholar 

  9. Mamsen LS, Brochner CB, Byskov AG, Mollgard K. The migration and loss of human primordial germ stem cells from the hind gut epithelium towards the gonadal ridge. Int J Dev Biol. 2012;56(10–12):771–8. https://doi.org/10.1387/ijdb.120202lm.

    Article  CAS  PubMed  Google Scholar 

  10. Hoyer PE, Byskov AG, Mollgard K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol. 2005;234(1–2):1–10. https://doi.org/10.1016/j.mce.2004.09.012.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PP. IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev Cell. 2005;9(6):745–56. https://doi.org/10.1016/j.devcel.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  12. Chaganti RS, Rodriguez E, Mathew S. Origin of adult male mediastinal germ-cell tumours. Lancet. 1994;343(8906):1130–2.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez A, Amatruda JF. Zebrafish germ cell Tumors. Adv Exp Med Biol. 2016;916:479–94. https://doi.org/10.1007/978-3-319-30654-4_21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamashiro C, Hirota T, Kurimoto K, Nakamura T, Yabuta Y, Nagaoka SI, Ohta H, Yamamoto T, Saitou M. Persistent requirement and alteration of the key targets of PRDM1 during primordial germ cell development in mice. Biol Reprod. 2016;94(1):7. https://doi.org/10.1095/biolreprod.115.133256.

    Article  CAS  PubMed  Google Scholar 

  15. Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436(7048):207–13. https://doi.org/10.1038/nature03813.

    Article  CAS  PubMed  Google Scholar 

  16. Tang WW, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet. 2016;17(10):585–600. https://doi.org/10.1038/nrg.2016.88.

    Article  CAS  PubMed  Google Scholar 

  17. Clark AT. DNA methylation remodeling in vitro and in vivo. Curr Opin Genet Dev. 2015;34:82–7. https://doi.org/10.1016/j.gde.2015.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Satoh M. Histogenesis and organogenesis of the gonad in human embryos. J Anat. 1991;177:85–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu C, Peng J, Matzuk MM, Yao HH. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun. 2015;6:6934. https://doi.org/10.1038/ncomms7934.

    Article  CAS  PubMed  Google Scholar 

  20. Karl J, Capel B. Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol. 1998;203(2):323–33. https://doi.org/10.1006/dbio.1998.9068.

    Article  CAS  PubMed  Google Scholar 

  21. Hu YC, Okumura LM, Page DC. Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 2013;9(7):e1003629. https://doi.org/10.1371/journal.pgen.1003629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development. 1997;124(9):1653–64.

    CAS  PubMed  Google Scholar 

  23. Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Zhao Y, Grinberg A, Huang S, Kreidberg JA, Parker KL, Porter FD, Westphal H. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature. 2000;403(6772):909–13. https://doi.org/10.1038/35002622.

    Article  CAS  PubMed  Google Scholar 

  24. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91.

    Article  CAS  PubMed  Google Scholar 

  25. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10(11):673–83. https://doi.org/10.1038/nrendo.2014.163.

    Article  CAS  PubMed  Google Scholar 

  26. Hastie ND. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development. 2017;144(16):2862–72. https://doi.org/10.1242/dev.153163.

    Article  CAS  PubMed  Google Scholar 

  27. Topol L, Chen W, Song H, Day TF, Yang Y. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem. 2009;284(5):3323–33. https://doi.org/10.1074/jbc.M808048200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin YT, Capel B. Cell fate commitment during mammalian sex determination. Curr Opin Genet Dev. 2015;32:144–52. https://doi.org/10.1016/j.gde.2015.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hughes JF, Page DC. The biology and evolution of mammalian Y chromosomes. Annu Rev Genet. 2015;49:507–27. https://doi.org/10.1146/annurev-genet-112414-055311.

    Article  CAS  PubMed  Google Scholar 

  30. Koopman P. The curious world of gonadal development in mammals. Curr Top Dev Biol. 2016;116:537–45. https://doi.org/10.1016/bs.ctdb.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  31. Sekido R, Lovell-Badge R. Sex determination and SRY: down to a wink and a nudge? Trends Genet. 2009;25(1):19–29. https://doi.org/10.1016/j.tig.2008.10.008.

    Article  CAS  PubMed  Google Scholar 

  32. Spiller C, Koopman P, Bowles J. Sex determination in the mammalian germline. Annu Rev Genet. 2017;51:265–85. https://doi.org/10.1146/annurev-genet-120215-035449.

    Article  CAS  PubMed  Google Scholar 

  33. Kurilo LF. Oogenesis in antenatal development in man. Hum Genet. 1981;57(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  34. Kashimada K, Svingen T, Feng CW, Pelosi E, Bagheri-Fam S, Harley VR, Schlessinger D, Bowles J, Koopman P. Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB J. 2011;25(10):3561–9. https://doi.org/10.1096/fj.11-184333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu S, Ristaldi MS, Marzella R, Rocchi M, Nicolino M, Lienhardt-Roussie A, Nivelon A, Verloes A, Schlessinger D, Gasparini P, Bonneau D, Cao A, Pilia G. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet. 2001;27(2):159–66. https://doi.org/10.1038/84781.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier AC, Treier M. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development. 2004;131(4):933–42. https://doi.org/10.1242/dev.00969.

    Article  CAS  PubMed  Google Scholar 

  37. Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod. 2012;86(2):37. https://doi.org/10.1095/biolreprod.111.095208.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Agha OM, Huwait HF, Chow C, Yang W, Senz J, Kalloger SE, Huntsman DG, Young RH, Gilks CB. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35(4):484–94. https://doi.org/10.1097/PAS.0b013e31820a406c.

    Article  PubMed  Google Scholar 

  39. Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet. 2004;13(11):1171–81. https://doi.org/10.1093/hmg/ddh124.

    Article  CAS  PubMed  Google Scholar 

  40. Ottolenghi C, Omari S, Garcia-Ortiz JE, Uda M, Crisponi L, Forabosco A, Pilia G, Schlessinger D. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet. 2005;14(14):2053–62. https://doi.org/10.1093/hmg/ddi210.

    Article  CAS  PubMed  Google Scholar 

  41. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schutz G, Cooney AJ, Lovell-Badge R, Treier M. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009;139(6):1130–42. https://doi.org/10.1016/j.cell.2009.11.021.

    Article  CAS  PubMed  Google Scholar 

  42. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, Sun M, Giuliany R, Yorida E, Jones S, Varhol R, Swenerton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Turashvili G, Zhao Y, Zeng T, Glover JN, Vanderhyden B, Zhao C, Parkinson CA, Jimenez-Linan M, Bowtell DD, Mes-Masson AM, Brenton JD, Aparicio SA, Boyd N, Hirst M, Gilks CB, Marra M, Huntsman DG. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719–29. https://doi.org/10.1056/NEJMoa0902542.

    Article  CAS  PubMed  Google Scholar 

  43. Buza N, Wong S, Hui P. FOXL2 mutation analysis of ovarian sex cord-stromal tumors: genotype-phenotype correlation with diagnostic considerations. Int J Gynecol Pathol. 2018;37(4):305–15. https://doi.org/10.1097/PGP.0000000000000426.

    Article  CAS  PubMed  Google Scholar 

  44. Sullivan SD, Castrillon DH. Insights into primary ovarian insufficiency through genetically engineered mouse models. Semin Reprod Med. 2011;29(4):283–98. https://doi.org/10.1055/s-0031-1280914.

    Article  CAS  PubMed  Google Scholar 

  45. Greenbaum MP, Yan W, Wu MH, Lin YN, Agno JE, Sharma M, Braun RE, Rajkovic A, Matzuk MM. TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci U S A. 2006;103(13):4982–7. https://doi.org/10.1073/pnas.0505123103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lei L, Spradling AC. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science. 2016;352(6281):95–9. https://doi.org/10.1126/science.aad2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Konishi I, Fujii S, Okamura H, Parmley T, Mori T. Development of interstitial cells and ovigerous cords in the human fetal ovary: an ultrastructural study. J Anat. 1986;148:121–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sforza C, Vizzotto L, Ferrario VF, Forabosco A. Position of follicles in normal human ovary during definitive histogenesis. Early Hum Dev. 2003;74(1):27–35.

    Article  PubMed  Google Scholar 

  49. Pepling ME. Follicular assembly: mechanisms of action. Reproduction. 2012;143(2):139–49. https://doi.org/10.1530/REP-11-0299.

    Article  CAS  PubMed  Google Scholar 

  50. Saatcioglu HD, Cuevas I, Castrillon DH. Control of oocyte reawakening by Kit. PLoS Genet. 2016;12(8):e1006215. https://doi.org/10.1371/journal.pgen.1006215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci. 1963;158:417–33.

    Article  CAS  PubMed  Google Scholar 

  52. Tilly JL. Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol. 2001;2(11):838–48. https://doi.org/10.1038/35099086.

    Article  CAS  PubMed  Google Scholar 

  53. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. https://doi.org/10.1093/humupd/dmv036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708. https://doi.org/10.1093/humrep/dem408.

    Article  PubMed  Google Scholar 

  55. Livera G, Petre-Lazar B, Guerquin MJ, Trautmann E, Coffigny H, Habert R. p63 null mutation protects mouse oocytes from radio-induced apoptosis. Reproduction. 2008;135(1):3–12. https://doi.org/10.1530/REP-07-0054.

    Article  CAS  PubMed  Google Scholar 

  56. Hutt KJ. The role of BH3-only proteins in apoptosis within the ovary. Reproduction. 2015;149(2):R81–9. https://doi.org/10.1530/REP-14-0422.

    Article  CAS  PubMed  Google Scholar 

  57. Rafique S, Sterling EW, Nelson LM. A new approach to primary ovarian insufficiency. Obstet Gynecol Clin North Am. 2012;39(4):567–86. https://doi.org/10.1016/j.ogc.2012.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14. https://doi.org/10.1210/edrv.21.2.0394.

    Article  CAS  PubMed  Google Scholar 

  59. Peters H, Byskov AG, Himelstein-Braw R, Faber M. Follicular growth: the basic event in the mouse and human ovary. J Reprod Fertil. 1975;45(3):559–66.

    Article  CAS  PubMed  Google Scholar 

  60. Eppig JJ, O’Brien M, Wigglesworth K. Mammalian oocyte growth and development in vitro. Mol Reprod Dev. 1996;44(2):260–73. https://doi.org/10.1002/(SICI)1098-2795(199606)44:2<260::AID-MRD17>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  61. Peters H, Byskov AG, Lintern-Moore S, Faber M, Andersen M. The effect of gonadotrophin on follicle growth initiation in the neonatal mouse ovary. J Reprod Fertil. 1973;35(1):139–41.

    Article  CAS  PubMed  Google Scholar 

  62. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8. https://doi.org/10.1126/science.1086336.

    Article  CAS  PubMed  Google Scholar 

  63. John GB, Shirley LJ, Gallardo TD, Castrillon DH. Specificity of the requirement for Foxo3 in primordial follicle activation. Reproduction. 2007;133(5):855–63. https://doi.org/10.1530/REP-06-0051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321(1):197–204. https://doi.org/10.1016/j.ydbio.2008.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008;319(5863):611–3. https://doi.org/10.1126/science.1152257.

    Article  CAS  PubMed  Google Scholar 

  66. Tarnawa ED, Baker MD, Aloisio GM, Carr BR, Castrillon DH. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse Mammalian species. Biol Reprod. 2013;88(4):103. https://doi.org/10.1095/biolreprod.112.105791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.

    Article  CAS  PubMed  Google Scholar 

  68. Müller JP. Bildungsgeschichte der Genitalien, vol. xviii, 152 p. Düsseldorf: Arnz; 1830.

    Google Scholar 

  69. Adelmann HB, editor. Marcello Malpighi and the evolution of embryology, Cornell publications in the history of science, vol. 4. Ithaca: Cornell University Press; 1966. p. 1851–901

    Google Scholar 

  70. Hashimoto R. Development of the human Mullerian duct in the sexually undifferentiated stage. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):514–9. https://doi.org/10.1002/ar.a.10061.

    Article  PubMed  Google Scholar 

  71. Vigier B, Picard JY, Bezard J, Josso N. Anti-Mullerian hormone: a local or long-distance morphogenetic factor? Hum Genet. 1981;58(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  72. Mullen RD, Behringer RR. Molecular genetics of Mullerian duct formation, regression and differentiation. Sex Dev. 2014;8(5):281–96. https://doi.org/10.1159/000364935.

    Article  CAS  PubMed  Google Scholar 

  73. Josso N, di Clemente N, Gouedard L. Anti-Mullerian hormone and its receptors. Mol Cell Endocrinol. 2001;179(1–2):25–32.

    Article  CAS  PubMed  Google Scholar 

  74. Klattig J, Englert C. The Mullerian duct: recent insights into its development and regression. Sex Dev. 2007;1(5):271–8. https://doi.org/10.1159/000108929.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao F, Franco HL, Rodriguez KF, Brown PR, Tsai MJ, Tsai SY, Yao HH. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357(6352):717–20. https://doi.org/10.1126/science.aai9136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A. 2016;170(8):2141–72. https://doi.org/10.1002/ajmg.a.37775.

    Article  PubMed  Google Scholar 

  77. Gruenwald P. The relation of the growing müllerian duct to the wolffian duct and its importance for the genesis of malformations. Anat Rec. 1941;81:1–19.

    Article  Google Scholar 

  78. Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development. 2004;131(3):539–49. https://doi.org/10.1242/dev.00951.

    Article  CAS  PubMed  Google Scholar 

  79. Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121(12):4057–65.

    CAS  PubMed  Google Scholar 

  80. Robboy SJ, Kurita T, Baskin L, Cunha GR. New insights into human female reproductive tract development. Differentiation. 2017;97:9–22. https://doi.org/10.1016/j.diff.2017.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang CC, Orvis GD, Kwan KM, Behringer RR. Lhx1 is required in Mullerian duct epithelium for uterine development. Dev Biol. 2014;389(2):124–36. https://doi.org/10.1016/j.ydbio.2014.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9. https://doi.org/10.1038/17068.

    Article  CAS  PubMed  Google Scholar 

  83. Prunskaite-Hyyrylainen R, Skovorodkin I, Xu Q, Miinalainen I, Shan J, Vainio SJ. Wnt4 coordinates directional cell migration and extension of the Mullerian duct essential for ontogenesis of the female reproductive tract. Hum Mol Genet. 2016;25(6):1059–73. https://doi.org/10.1093/hmg/ddv621.

    Article  CAS  PubMed  Google Scholar 

  84. Kurita T. Developmental origin of vaginal epithelium. Differentiation. 2010;80(2–3):99–105. https://doi.org/10.1016/j.diff.2010.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fujino A, Arango NA, Zhan Y, Manganaro TF, Li X, MacLaughlin DT, Donahoe PK. Cell migration and activated PI3K/AKT-directed elongation in the developing rat Mullerian duct. Dev Biol. 2009;325(2):351–62. https://doi.org/10.1016/j.ydbio.2008.10.027.

    Article  CAS  PubMed  Google Scholar 

  86. Devouassoux-Shisheboran M, Silver SA, Tavassoli FA. Wolffian adnexal tumor, so-called female adnexal tumor of probable Wolffian origin (FATWO): immunohistochemical evidence in support of a Wolffian origin. Hum Pathol. 1999;30(7):856–63.

    Article  CAS  PubMed  Google Scholar 

  87. Labastie MC, Catala M, Gregoire JM, Peault B. The GATA-3 gene is expressed during human kidney embryogenesis. Kidney Int. 1995;47(6):1597–603.

    Article  CAS  PubMed  Google Scholar 

  88. Grote D, Souabni A, Busslinger M, Bouchard M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development. 2006;133(1):53–61. https://doi.org/10.1242/dev.02184.

    Article  CAS  PubMed  Google Scholar 

  89. Howitt BE, Emori MM, Drapkin R, Gaspar C, Barletta JA, Nucci MR, McCluggage WG, Oliva E, Hirsch MS. GATA3 is a sensitive and specific marker of benign and malignant Mesonephric lesions in the lower female genital tract. Am J Surg Pathol. 2015;39(10):1411–9. https://doi.org/10.1097/PAS.0000000000000471.

    Article  PubMed  Google Scholar 

  90. Atsuta Y, Takahashi Y. Early formation of the Mullerian duct is regulated by sequential actions of BMP/Pax2 and FGF/Lim1 signaling. Development. 2016;143(19):3549–59. https://doi.org/10.1242/dev.137067.

    Article  CAS  PubMed  Google Scholar 

  91. Mittag J, Winterhager E, Bauer K, Grummer R. Congenital hypothyroid female pax8-deficient mice are infertile despite thyroid hormone replacement therapy. Endocrinology. 2007;148(2):719–25. https://doi.org/10.1210/en.2006-1054.

    Article  CAS  PubMed  Google Scholar 

  92. Batista MF, Lewis KE. Pax2/8 act redundantly to specify glycinergic and GABAergic fates of multiple spinal interneurons. Dev Biol. 2008;323(1):88–97. https://doi.org/10.1016/j.ydbio.2008.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol. 2010;10:89. https://doi.org/10.1186/1471-213X-10-89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klattig J, Sierig R, Kruspe D, Besenbeck B, Englert C. Wilms’ tumor protein Wt1 is an activator of the anti-Mullerian hormone receptor gene Amhr2. Mol Cell Biol. 2007;27(12):4355–64. https://doi.org/10.1128/MCB.01780-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB. The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev. 1993;40(1–2):85–97.

    Article  CAS  PubMed  Google Scholar 

  96. Parenti R, Perris R, Vecchio GM, Salvatorelli L, Torrisi A, Gravina L, Magro G. Immunohistochemical expression of Wilms’ tumor protein (WT1) in developing human epithelial and mesenchymal tissues. Acta Histochem. 2013;115(1):70–5. https://doi.org/10.1016/j.acthis.2012.04.006.

    Article  CAS  PubMed  Google Scholar 

  97. Shimizu M, Toki T, Takagi Y, Konishi I, Fujii S. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol. 2000;19(2):158–63.

    Article  CAS  PubMed  Google Scholar 

  98. Kommoss F, Faruqi A, Gilks CB, Lamshang Leen S, Singh N, Wilkinson N, McCluggage WG. Uterine serous carcinomas frequently metastasize to the fallopian tube and can mimic serous tubal intraepithelial carcinoma. Am J Surg Pathol. 2017;41(2):161–70. https://doi.org/10.1097/PAS.0000000000000757.

    Article  PubMed  Google Scholar 

  99. Nafisi H, Ghorab Z, Ismill N, Dube V, Plotkin A, Han G, Cesari M, Lu FI, Saad R, Khalifa M, Nofech-Mozes S. Immunophenotypic analysis in early Mullerian serous carcinogenesis. Int J Gynecol Pathol. 2015;34(5):424–36. https://doi.org/10.1097/PGP.0000000000000179.

    Article  CAS  PubMed  Google Scholar 

  100. Du H, Taylor HS. The role of Hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb Perspect Med. 2015;6(1):a023002. https://doi.org/10.1101/cshperspect.a023002.

    Article  CAS  PubMed  Google Scholar 

  101. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997;57(6):1338–45.

    Article  CAS  PubMed  Google Scholar 

  102. Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997;124(23):4781–91.

    CAS  PubMed  Google Scholar 

  103. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398(6729):714–8. https://doi.org/10.1038/19539.

    Article  CAS  PubMed  Google Scholar 

  104. Ince TA, Cviko AP, Quade BJ, Yang A, McKeon FD, Mutter GL, Crum CP. p63 Coordinates anogenital modeling and epithelial cell differentiation in the developing female urogenital tract. Am J Pathol. 2002;161(4):1111–7. https://doi.org/10.1016/S0002-9440(10)64387-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Crum CP, McKeon FD. p63 in epithelial survival, germ cell surveillance, and neoplasia. Annu Rev Pathol. 2010;5:349–71. https://doi.org/10.1146/annurev-pathol-121808-102117.

    Article  CAS  PubMed  Google Scholar 

  106. Kurita T, Mills AA, Cunha GR. Roles of p63 in the diethylstilbestrol-induced cervicovaginal adenosis. Development. 2004;131(7):1639–49. https://doi.org/10.1242/dev.01038.

    Article  CAS  PubMed  Google Scholar 

  107. Laronda MM, Unno K, Ishi K, Serna VA, Butler LM, Mills AA, Orvis GD, Behringer RR, Deng C, Sinha S, Kurita T. Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Mullerian duct epithelium. Dev Biol. 2013;381(1):5–16. https://doi.org/10.1016/j.ydbio.2013.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Terakawa J, Rocchi A, Serna VA, Bottinger EP, Graff JM, Kurita T. FGFR2IIIb-MAPK activity is required for epithelial cell fate decision in the lower Mullerian duct. Mol Endocrinol. 2016;30(7):783–95. https://doi.org/10.1210/me.2016-1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Mol Hum Reprod. 2013;19(9):547–58. https://doi.org/10.1093/molehr/gat031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Valdes-Dapena MA. Uterine development in late Fetal life, infancy, and childhood. In: Norris HJ, Hertig AT, Abell MR, editors. The uterus. Monographs in pathology. Baltimore: Williams & Wilkins; 1973. p. 40–67.

    Google Scholar 

  111. Fluhmann CF. The developmental anatomy of the cervix uteri. Obstet Gynecol. 1960;15:62–9.

    CAS  PubMed  Google Scholar 

  112. Ogasawara Y, Okamoto S, Kitamura Y, Matsumoto K. Proliferative pattern of uterine cells from birth to adulthood in intact, neonatally castrated, and/or adrenalectomized mice, assayed by incorporation of [125I]iododeoxyuridine. Endocrinology. 1983;113(2):582–7. https://doi.org/10.1210/endo-113-2-582.

    Article  CAS  PubMed  Google Scholar 

  113. Gray CA, Taylor KM, Ramsey WS, Hill JR, Bazer FW, Bartol FF, Spencer TE. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod. 2001;64(6):1608–13.

    Article  CAS  PubMed  Google Scholar 

  114. Filant J, Spencer TE. Endometrial glands are essential for blastocyst implantation and decidualization in the mouse uterus. Biol Reprod. 2013;88(4):93. https://doi.org/10.1095/biolreprod.113.107631.

    Article  CAS  PubMed  Google Scholar 

  115. Cooke PS, Ekman GC, Kaur J, Davila J, Bagchi IC, Clark SG, Dziuk PJ, Hayashi K, Bartol FF. Brief exposure to progesterone during a critical neonatal window prevents uterine gland formation in mice. Biol Reprod. 2012;86(3):63. https://doi.org/10.1095/biolreprod.111.097188.

    Article  CAS  PubMed  Google Scholar 

  116. Friedman JR, Kaestner KH. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63(19–20):2317–28. https://doi.org/10.1007/s00018-006-6095-6.

    Article  CAS  PubMed  Google Scholar 

  117. Dunlap KA, Filant J, Hayashi K, Rucker EB 3rd, Song G, Deng JM, Behringer RR, DeMayo FJ, Lydon J, Jeong JW, Spencer TE. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol Reprod. 2011;85(2):386–96. https://doi.org/10.1095/biolreprod.111.091769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kelleher AM, Peng W, Pru JK, Pru CA, DeMayo FJ, Spencer TE. Forkhead box a2 (FOXA2) is essential for uterine function and fertility. Proc Natl Acad Sci U S A. 2017;114(6):E1018–26. https://doi.org/10.1073/pnas.1618433114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parr BA, McMahon AP. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature. 1998;395(6703):707–10. https://doi.org/10.1038/27221.

    Article  CAS  PubMed  Google Scholar 

  120. Miller C, Sassoon DA. Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development. 1998;125(16):3201–11.

    CAS  PubMed  Google Scholar 

  121. Hayashi K, Yoshioka S, Reardon SN, Rucker EB 3rd, Spencer TE, DeMayo FJ, Lydon JP, MacLean JA 2nd. WNTs in the neonatal mouse uterus: potential regulation of endometrial gland development. Biol Reprod. 2011;84(2):308–19. https://doi.org/10.1095/biolreprod.110.088161.

    Article  CAS  PubMed  Google Scholar 

  122. Franco HL, Dai D, Lee KY, Rubel CA, Roop D, Boerboom D, Jeong JW, Lydon JP, Bagchi IC, Bagchi MK, DeMayo FJ. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25(4):1176–87. https://doi.org/10.1096/fj.10-175349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Y, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Curr Top Dev Biol. 2016;117:113–39. https://doi.org/10.1016/bs.ctdb.2015.11.028.

    Article  PubMed  PubMed Central  Google Scholar 

  124. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stewart CA, Wang Y, Bonilla-Claudio M, Martin JF, Gonzalez G, Taketo MM, Behringer RR. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Mullerian duct and postnatal uterine development. Mol Endocrinol. 2013;27(9):1442–54. https://doi.org/10.1210/me.2012-1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, Lydon JP, DeMayo FJ. beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene. 2009;28(1):31–40. https://doi.org/10.1038/onc.2008.363.

    Article  CAS  PubMed  Google Scholar 

  127. Saegusa M, Okayasu I. Frequent nuclear beta-catenin accumulation and associated mutations in endometrioid-type endometrial and ovarian carcinomas with squamous differentiation. J Pathol. 2001;194(1):59–67. https://doi.org/10.1002/path.856.

    Article  CAS  PubMed  Google Scholar 

  128. Abbott JA. Adenomyosis and abnormal uterine bleeding (AUB-A)-pathogenesis, diagnosis, and management. Best Pract Res Clin Obstet Gynaecol. 2017;40:68–81. https://doi.org/10.1016/j.bpobgyn.2016.09.006.

    Article  PubMed  Google Scholar 

  129. Oh SJ, Shin JH, Kim TH, Lee HS, Yoo JY, Ahn JY, Broaddus RR, Taketo MM, Lydon JP, Leach RE, Lessey BA, Fazleabas AT, Lim JM, Jeong JW. beta-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. J Pathol. 2013;231(2):210–22. https://doi.org/10.1002/path.4224.

    Article  CAS  PubMed  Google Scholar 

  130. Gun I, Oner O, Bodur S, Ozdamar O, Atay V. Is adenomyosis associated with the risk of endometrial cancer? Med Glas (Zenica). 2012;9(2):268–72.

    Google Scholar 

  131. Vercellini P, Parazzini F, Oldani S, Panazza S, Bramante T, Crosignani PG. Adenomyosis at hysterectomy: a study on frequency distribution and patient characteristics. Hum Reprod. 1995;10(5):1160–2.

    Article  CAS  PubMed  Google Scholar 

  132. Orvis GD, Behringer RR. Cellular mechanisms of Mullerian duct formation in the mouse. Dev Biol. 2007;306(2):493–504. https://doi.org/10.1016/j.ydbio.2007.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Castrillon DH, Lee KR, Nucci MR. Distinction between endometrial and endocervical adenocarcinoma: an immunohistochemical study. Int J Gynecol Pathol. 2002;21(1):4–10.

    Article  PubMed  Google Scholar 

  134. Nucci MR, Castrillon DH, Bai H, Quade BJ, Ince TA, Genest DR, Lee KR, Mutter GL, Crum CP. Biomarkers in diagnostic obstetric and gynecologic pathology: a review. Adv Anat Pathol. 2003;10(2):55–68.

    Article  PubMed  Google Scholar 

  135. Allard S, Adin P, Gouedard L, di Clemente N, Josso N, Orgebin-Crist MC, Picard JY, Xavier F. Molecular mechanisms of hormone-mediated Mullerian duct regression: involvement of beta-catenin. Development. 2000;127(15):3349–60.

    CAS  PubMed  Google Scholar 

  136. Huang CC, Orvis GD, Wang Y, Behringer RR. Stromal-to-epithelial transition during postpartum endometrial regeneration. PLoS One. 2012;7(8):e44285. https://doi.org/10.1371/journal.pone.0044285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cunha GR. Stromal induction and specification of morphogenesis and cytodifferentiation of the epithelia of the Mullerian ducts and urogenital sinus during development of the uterus and vagina in mice. J Exp Zool. 1976;196(3):361–70. https://doi.org/10.1002/jez.1401960310.

    Article  CAS  PubMed  Google Scholar 

  138. Chang AR. ‘Erosion’ of the uterine cervix; an anachronism. Aust N Z J Obstet Gynaecol. 1991;31(4):358–62.

    Article  CAS  PubMed  Google Scholar 

  139. Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4(12):969–80. https://doi.org/10.1038/nrg1225.

    Article  CAS  PubMed  Google Scholar 

  140. Cunha GR, Kurita T, Cao M, Shen J, Robboy S, Baskin L. Molecular mechanisms of development of the human fetal female reproductive tract. Differentiation. 2017;97:54–72. https://doi.org/10.1016/j.diff.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jesus LE, Camelier P, Bastos J, Tome AS, Dekermacher S. Clitoral abnormalities in the absence of virilization: etiology and treatment strategies. Urology. 2016;88:170–2. https://doi.org/10.1016/j.urology.2015.10.020.

    Article  PubMed  Google Scholar 

  142. Griebel ML, Redman JF, Kemp SF, Elders MJ. Hypertrophy of clitoral hood: presenting sign of neurofibromatosis in female child. Urology. 1991;37(4):337–9.

    Article  CAS  PubMed  Google Scholar 

  143. Sutphen R, Galan-Gomez E, Kousseff BG. Clitoromegaly in neurofibromatosis. Am J Med Genet. 1995;55(3):325–30. https://doi.org/10.1002/ajmg.1320550316.

    Article  CAS  PubMed  Google Scholar 

  144. Rouzi AA, Sindi O, Radhan B, Ba’aqeel H. Epidermal clitoral inclusion cyst after type I female genital mutilation. Am J Obstet Gynecol. 2001;185(3):569–71. https://doi.org/10.1067/mob.2001.117660.

    Article  CAS  PubMed  Google Scholar 

  145. Hughes JW, Guess MK, Hittelman A, Yip S, Astle J, Pal L, Inzucchi SE, Dulay AT. Clitoral epidermoid cyst presenting as pseudoclitoromegaly of pregnancy. AJP Rep. 2013;3(1):57–62. https://doi.org/10.1055/s-0033-1334461.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Williams CE, Nakhal RS, Achermann JC, Creighton SM. Persistent unexplained congenital clitoromegaly in females born extremely prematurely. J Pediatr Urol. 2013;9(6 Pt A):962–5. https://doi.org/10.1016/j.jpurol.2013.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mayoglou L, Dulabon L, Martin-Alguacil N, Pfaff D, Schober J. Success of treatment modalities for labial fusion: a retrospective evaluation of topical and surgical treatments. J Pediatr Adolesc Gynecol. 2009;22(4):247–50. https://doi.org/10.1016/j.jpag.2008.09.003.

    Article  PubMed  Google Scholar 

  148. Ziglioli F, Fornia S, Ciuffireda M, Meli S, Dinale F, Simonazzi M, Cortellini P. Lichen sclerosus: a review of literature and a case of an atypic surgical treatment. Acta Biomed. 2011;82(1):51–7.

    PubMed  Google Scholar 

  149. Dietrich JE, Millar DM, Quint EH. Obstructive reproductive tract anomalies. J Pediatr Adolesc Gynecol. 2014;27(6):396–402. https://doi.org/10.1016/j.jpag.2014.09.001.

    Article  PubMed  Google Scholar 

  150. Olive DL, Henderson DY. Endometriosis and mullerian anomalies. Obstet Gynecol. 1987;69(3 Pt 1):412–5.

    CAS  PubMed  Google Scholar 

  151. Loscalzo IL, Catapano M, Loscalzo J, Sama A. Imperforate hymen with bilateral hydronephrosis: an unusual emergency department diagnosis. J Emerg Med. 1995;13(3):337–9.

    Article  CAS  PubMed  Google Scholar 

  152. Iwasa Y, Fletcher CD. Distinctive prepubertal vulval fibroma: a hitherto unrecognized mesenchymal tumor of prepubertal girls: analysis of 11 cases. Am J Surg Pathol. 2004;28(12):1601–8.

    Article  PubMed  Google Scholar 

  153. Vargas SO, Kozakewich HP, Boyd TK, Ecklund K, Fishman SJ, Laufer MR, Perez-Atayde AR. Childhood asymmetric labium majus enlargement: mimicking a neoplasm. Am J Surg Pathol. 2005;29(8):1007–16.

    PubMed  Google Scholar 

  154. Khunda S, Nakash A. Double vulva. J Obstet Gynaecol. 1999;19(1):94–5. https://doi.org/10.1080/01443619966155.

    Article  CAS  PubMed  Google Scholar 

  155. Bellemare S, Dibden L. Absence of the clitoris in a 13-year-old adolescent: medical implications for child and adolescent health. J Pediatr Adolesc Gynecol. 2005;18(6):415–8. https://doi.org/10.1016/j.jpag.2005.09.011.

    Article  PubMed  Google Scholar 

  156. Ruggeri G, Gargano T, Antonellini C, Carlini V, Randi B, Destro F, Lima M. Vaginal malformations: a proposed classification based on embryological, anatomical and clinical criteria and their surgical management (an analysis of 167 cases). Pediatr Surg Int. 2012;28(8):797–803. https://doi.org/10.1007/s00383-012-3121-7.

    Article  PubMed  Google Scholar 

  157. Wang J, Ezzat W, Davidson M. Transverse vaginal septum. A case report. J Reprod Med. 1995;40(2):163–6.

    CAS  PubMed  Google Scholar 

  158. Rana A, Manandhar B, Amatya A, Baral J, Gurung G, Giri A, Giri K. Mucocolpos due to complete transverse septum in middle third of vagina in a 17-year-old girl. J Obstet Gynaecol Res. 2002;28(2):86–8.

    Article  PubMed  Google Scholar 

  159. Pena A. Cloaca—historical aspects and terminology. Semin Pediatr Surg. 2016;25(2):62–5. https://doi.org/10.1053/j.sempedsurg.2015.11.002.

    Article  PubMed  Google Scholar 

  160. Gupta A, Bischoff A, Pena A, Runck LA, Guasch G. The great divide: septation and malformation of the cloaca, and its implications for surgeons. Pediatr Surg Int. 2014;30(11):1089–95. https://doi.org/10.1007/s00383-014-3593-8.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chan YY, Jayaprakasan K, Zamora J, Thornton JG, Raine-Fenning N, Coomarasamy A. The prevalence of congenital uterine anomalies in unselected and high-risk populations: a systematic review. Hum Reprod Update. 2011;17(6):761–71. https://doi.org/10.1093/humupd/dmr028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hammoud AO, Gibson M, Peterson CM, Kerber RA, Mineau GP, Hatasaka H. Quantification of the familial contribution to mullerian anomalies. Obstet Gynecol. 2008;111(2 Pt 1):378–84. https://doi.org/10.1097/01.AOG.0000267219.10869.9f.

    Article  PubMed  Google Scholar 

  163. Duru UA, Laufer MR. Discordance in Mayer-von Rokitansky-Kuster-Hauser syndrome noted in monozygotic twins. J Pediatr Adolesc Gynecol. 2009;22(4):e73–5. https://doi.org/10.1016/j.jpag.2008.07.012.

    Article  PubMed  Google Scholar 

  164. Grimbizis GF, Gordts S, Di Spiezio Sardo A, Brucker S, De Angelis C, Gergolet M, Li TC, Tanos V, Brolmann H, Gianaroli L, Campo R. The ESHRE-ESGE consensus on the classification of female genital tract congenital anomalies. Gynecol Surg. 2013;10(3):199–212. https://doi.org/10.1007/s10397-013-0800-x.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ludwin A, Martins WP, Nastri CO, Ludwin I, Coelho Neto MA, Leitao VM, Acien M, Alcazar JL, Benacerraf B, Condous G, De Wilde RL, Emanuel MH, Gibbons W, Guerriero S, Hurd WW, Levine D, Lindheim S, Pellicer A, Petraglia F, Saridogan E. Congenital Uterine Malformation by Experts (CUME): better criteria for distinguishing between normal/arcuate and septate uterus? Ultrasound Obstet Gynecol. 2018;51(1):101–9. https://doi.org/10.1002/uog.18923.

    Article  CAS  PubMed  Google Scholar 

  166. Ludwin A, Ludwin I, Kudla M, Kottner J. Reliability of the European Society of Human Reproduction and Embryology/European Society for Gynaecological Endoscopy and American Society for Reproductive Medicine classification systems for congenital uterine anomalies detected using three-dimensional ultrasonography. Fertil Steril. 2015;104(3):688–97 e688. https://doi.org/10.1016/j.fertnstert.2015.06.019.

    Article  PubMed  Google Scholar 

  167. Kives S. Müllerian anomaly classification systems. In: Pfeifer SM, editor. Congenital Müllerian anomalies: diagnosis and management. Cham: Springer International Publishing; 2016. p. 3–12. https://doi.org/10.1007/978-3-319-27231-3_1.

    Chapter  Google Scholar 

  168. Bombard DS 2nd, Mousa SA. Mayer-Rokitansky-Kuster-Hauser syndrome: complications, diagnosis and possible treatment options: a review. Gynecol Endocrinol. 2014;30(9):618–23. https://doi.org/10.3109/09513590.2014.927855.

    Article  PubMed  Google Scholar 

  169. Prior M, Richardson A, Asif S, Polanski L, Parris-Larkin M, Chandler J, Fogg L, Jassal P, Thornton JG, Raine-Fenning NJ. Outcome of assisted reproduction in women with congenital uterine anomalies: a prospective observational study. Ultrasound Obstet Gynecol. 2018;51(1):110–7. https://doi.org/10.1002/uog.18935.

    Article  CAS  PubMed  Google Scholar 

  170. Kaufman Y, Lam A. The pelvic uterus-like mass--a primary or secondary Mullerian system anomaly? J Minim Invasive Gynecol. 2008;15(4):494–7. https://doi.org/10.1016/j.jmig.2008.03.002.

    Article  PubMed  Google Scholar 

  171. Cozzutto C. Uterus-like mass replacing ovary: report of a new entity. Arch Pathol Lab Med. 1981;105(10):508–11.

    CAS  PubMed  Google Scholar 

  172. Sopha SC, Rosado FG, Smith JJ, Merchant NB, Shi C. Hepatic uterus-like mass misdiagnosed as hepatic abscess. Int J Surg Pathol. 2015;23(2):134–9. https://doi.org/10.1177/1066896914534465.

    Article  PubMed  Google Scholar 

  173. Gonzalez RS, Vnencak-Jones CL, Shi C, Fadare O. Endomyometriosis (“uterus-like mass”) in an XY male: case report with molecular confirmation and literature review. Int J Surg Pathol. 2014;22(5):421–6. https://doi.org/10.1177/1066896913501385.

    Article  PubMed  Google Scholar 

  174. Kakkar A, Sharma MC, Garg A, Goyal N, Suri V, Sarkar C, Mahapatra AK. Uterus-like mass in association with neural tube defect: a case report and review of the literature. Pediatr Neurosurg. 2012;48(4):240–4. https://doi.org/10.1159/000348811.

    Article  PubMed  Google Scholar 

  175. Rahilly MA, al-Nafussi A. Uterus-like mass of the ovary associated with endometrioid carcinoma. Histopathology. 1991;18(6):549–51.

    Article  CAS  PubMed  Google Scholar 

  176. Nakakita B, Abiko K, Mikami Y, Kido A, Baba T, Yoshioka Y, Yamaguchi K, Matsumura N, Konishi I. Clear cell carcinoma arising from a uterus-like mass. Pathol Int. 2014;64(11):576–80. https://doi.org/10.1111/pin.12218.

    Article  PubMed  Google Scholar 

  177. Seki A, Maeshima A, Nakagawa H, Shiraishi J, Murata Y, Arai H, Kubochi K, Kuramochi S. A subserosal uterus-like mass presenting after a sliding hernia of the ovary and endometriosis: a rare entity with a discussion of the histogenesis. Fertil Steril. 2011;95(5):1788 e1715–89. https://doi.org/10.1016/j.fertnstert.2010.11.051.

    Article  Google Scholar 

  178. Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 1997;15(2):179–80. https://doi.org/10.1038/ng0297-179.

    Article  CAS  PubMed  Google Scholar 

  179. Jorgensen EM, Ruman JI, Doherty L, Taylor HS. A novel mutation of HOXA13 in a family with hand-foot-genital syndrome and the role of polyalanine expansions in the spectrum of Mullerian fusion anomalies. Fertil Steril. 2010;94(4):1235–8. https://doi.org/10.1016/j.fertnstert.2009.05.057.

    Article  CAS  PubMed  Google Scholar 

  180. Cheng Z, Zhu Y, Su D, Wang J, Cheng L, Chen B, Wei Z, Zhou P, Wang B, Ma X, Cao Y. A novel mutation of HOXA10 in a Chinese woman with a Mullerian duct anomaly. Hum Reprod. 2011;26(11):3197–201. https://doi.org/10.1093/humrep/der290.

    Article  CAS  PubMed  Google Scholar 

  181. Liatsikos SA, Grimbizis GF, Georgiou I, Papadopoulos N, Lazaros L, Bontis JN, Tarlatzis BC. HOX A10 and HOX A11 mutation scan in congenital malformations of the female genital tract. Reprod Biomed Online. 2010;21(1):126–32. https://doi.org/10.1016/j.rbmo.2010.03.015.

    Article  CAS  PubMed  Google Scholar 

  182. Schinzel A. Phocomelia and additional anomalies in two sisters. Hum Genet. 1990;84(6):539–41.

    Article  CAS  PubMed  Google Scholar 

  183. Coffinier C, Barra J, Babinet C, Yaniv M. Expression of the vHNF1/HNF1beta homeoprotein gene during mouse organogenesis. Mech Dev. 1999;89(1–2):211–3.

    Article  CAS  PubMed  Google Scholar 

  184. Lokmane L, Heliot C, Garcia-Villalba P, Fabre M, Cereghini S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development. 2010;137(2):347–57. https://doi.org/10.1242/dev.042226.

    Article  CAS  PubMed  Google Scholar 

  185. Lim D, Ip PP, Cheung AN, Kiyokawa T, Oliva E. Immunohistochemical comparison of ovarian and uterine endometrioid carcinoma, endometrioid carcinoma with clear cell change, and clear cell carcinoma. Am J Surg Pathol. 2015;39(8):1061–9. https://doi.org/10.1097/PAS.0000000000000436.

    Article  PubMed  Google Scholar 

  186. Pabuccu E, Kahraman K, Taskin S, Atabekoglu C. Unilateral absence of fallopian tube and ovary in an infertile patient. Fertil Steril. 2011;96(1):e55–7. https://doi.org/10.1016/j.fertnstert.2011.04.027.

    Article  PubMed  Google Scholar 

  187. Rapisarda G, Pappalardo EM, Arancio A, La Greca M. Unilateral ovarian and fallopian tube agenesis. Arch Gynecol Obstet. 2009;280(5):849–50. https://doi.org/10.1007/s00404-009-1018-z.

    Article  PubMed  Google Scholar 

  188. Tanaka Y, Koyama S, Kobayashi M, Kubota S, Nakamura R, Isobe M, Shiki Y. Complex Mullerian malformation without any present classification: unilateral ovarian and tubal absence with an arcuate uterus. Asian J Endosc Surg. 2013;6(1):55–7. https://doi.org/10.1111/j.1758-5910.2012.00159.x.

    Article  PubMed  Google Scholar 

  189. Mylonas I, Hansch S, Markmann S, Bolz M, Friese K. Unilateral ovarian agenesis: report of three cases and review of the literature. Arch Gynecol Obstet. 2003;268(1):57–60. https://doi.org/10.1007/s00404-002-0451-z.

    Article  CAS  PubMed  Google Scholar 

  190. Gandhi KR, Siddiqui AU, Wabale RN, Daimi SR. The accessory fallopian tube: a rare anomaly. J Hum Reprod Sci. 2012;5(3):293–4. https://doi.org/10.4103/0974-1208.106344.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Rottenstreich M, Smorgick N, Pansky M, Vaknin Z. Isolated torsion of accessory fallopian tube in a young adolescent. J Pediatr Adolesc Gynecol. 2016;29(4):e57–8. https://doi.org/10.1016/j.jpag.2016.03.003.

    Article  PubMed  Google Scholar 

  192. Ucar MG, Ilhan TT, Gul A, Korkutan C, Celik C. Patient with three fallopian tubes at right adnexa. J Clin Diagn Res. 2017;11(2):QJ03–4. https://doi.org/10.7860/JCDR/2017/22713.9263.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Narayanan R, Rajeev MA. Duplication of the fallopian tube. J Hum Reprod Sci. 2008;1(1):35–6.

    Google Scholar 

  194. Liu Q, Liu HQ, Jiang YY, Sun XB. Is unilateral uterine adnexa absence a congenital developmental abnormality or posteriority? Summary of 39 cases and literature review. Arch Gynecol Obstet. 2013;288(3):555–61. https://doi.org/10.1007/s00404-013-2891-z.

    Article  PubMed  Google Scholar 

  195. Verkauf BS, Bernhisel MA. Ovarian maldescent. Fertil Steril. 1996;65(1):189–92.

    Article  CAS  PubMed  Google Scholar 

  196. Veurink M, Koster M, LT B. The history of DES, lessons to be learned. Pharm World Sci. 2005;27(3):139–43. https://doi.org/10.1007/s11096-005-3663-z.

    Article  PubMed  Google Scholar 

  197. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(15):878–81. https://doi.org/10.1056/NEJM197104222841604.

    Article  CAS  PubMed  Google Scholar 

  198. Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol. 1998;197(2):141–54. https://doi.org/10.1006/dbio.1998.8907.

    Article  CAS  PubMed  Google Scholar 

  199. Kaufman RH, Adam E, Binder GL, Gerthoffer E. Upper genital tract changes and pregnancy outcome in offspring exposed in utero to diethylstilbestrol. Am J Obstet Gynecol. 1980;137(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  200. Goldberg JM, Falcone T. Effect of diethylstilbestrol on reproductive function. Fertil Steril. 1999;72(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  201. Swan SH. Intrauterine exposure to diethylstilbestrol: long-term effects in humans. APMIS. 2000;108(12):793–804.

    Article  CAS  PubMed  Google Scholar 

  202. John GB, Shidler MJ, Besmer P, Castrillon DH. Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev Biol. 2009;331(2):292–9. https://doi.org/10.1016/j.ydbio.2009.05.546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80. https://doi.org/10.1016/j.cell.2006.10.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego H. Castrillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castrillon, D.H. (2019). Development and Maldevelopment of the Female Reproductive System. In: Zheng, W., Fadare, O., Quick, C., Shen, D., Guo, D. (eds) Gynecologic and Obstetric Pathology, Volume 1. Springer, Singapore. https://doi.org/10.1007/978-981-13-3016-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3016-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3015-5

  • Online ISBN: 978-981-13-3016-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics