Skip to main content

Zebrafish Germ Cell Tumors

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houston DW, King ML (2000) Germ plasm and molecular determinants of germ cell fate. Curr Top Dev Biol 50:155–181

    Article  CAS  PubMed  Google Scholar 

  2. Kosaka K et al (2007) Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech Dev 124(4):279–289

    Article  CAS  PubMed  Google Scholar 

  3. Raz E (2003) Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4(9):690–700

    Article  CAS  PubMed  Google Scholar 

  4. Saffman EE, Lasko P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55(8–9):1141–1163

    Article  CAS  PubMed  Google Scholar 

  5. Koprunner M et al (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15(21):2877–2885

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai F, King ML (2013) Repressive translational control in germ cells. Mol Reprod Dev 80(8):665–676

    Article  CAS  PubMed  Google Scholar 

  7. Braat AK et al (1999) Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev Dyn 216(2):153–167

    Article  CAS  PubMed  Google Scholar 

  8. Knaut H et al (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol 149(4):875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66(1–2):95–105

    Article  CAS  PubMed  Google Scholar 

  10. Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124(16):3157–3165

    CAS  PubMed  Google Scholar 

  11. Gruidl ME et al (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A 93(24): 13837–13842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hay B, Jan LY, Jan YN (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55(4):577–587

    Article  CAS  PubMed  Google Scholar 

  13. Komiya T et al (1994) Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev Biol 162(2):354–363

    Article  CAS  PubMed  Google Scholar 

  14. Liang L, Diehl-Jones W, Lasko P (1994) Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120(5): 1201–1211

    CAS  PubMed  Google Scholar 

  15. Weidinger G et al (1999) Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development 126(23):5295–5307

    CAS  PubMed  Google Scholar 

  16. Kierszenbaum AL, Tres LL (2001) Primordial germ cell-somatic cell partnership: a balancing cell signaling act. Mol Reprod Dev 60(3):277–280

    Article  CAS  PubMed  Google Scholar 

  17. Ying Y, Qi X, Zhao GQ (2002) Induction of primordial germ cells from pluripotent epiblast. Sci World J 2:801–810

    Article  CAS  Google Scholar 

  18. de Sousa Lopes SM et al (2004) BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev 18(15):1838–1849

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lacham-Kaplan O (2004) In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 128(2):147–152

    Article  PubMed  Google Scholar 

  20. Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418(6895):293–300

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka SS et al (2004) Regulation of expression of mouse interferon-induced transmembrane protein like gene-3, Ifitm3 (mil-1, fragilis), in germ cells. Dev Dyn 230(4):651–659

    Article  CAS  PubMed  Google Scholar 

  22. Lawson KA et al (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13(4):424–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ying Y, Qi X, Zhao GQ (2001) Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A 98(14):7858–7862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ying Y, Zhao GQ (2001) Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol 232(2):484–492

    Article  CAS  PubMed  Google Scholar 

  25. Lange UC et al (2003) The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanaka SS et al (2005) IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev Cell 9(6):745–756

    Article  CAS  PubMed  Google Scholar 

  27. Ohinata Y et al (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207–213

    Article  CAS  PubMed  Google Scholar 

  28. Scholer HR et al (1990) Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 9(7):2185–2195

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hansis C, Grifo JA, Krey LC (2000) Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod 6(11):999–1004

    Article  CAS  PubMed  Google Scholar 

  30. Pesce M, Scholer HR (2000) Oct-4: control of totipotency and germline determination. Mol Reprod Dev 55(4):452–457

    Article  CAS  PubMed  Google Scholar 

  31. Pesce M, Scholer HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19(4):271–278

    Article  CAS  PubMed  Google Scholar 

  32. Rajpert-De Meyts E et al (2004) Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum Reprod 19(6):1338–1344

    Article  CAS  PubMed  Google Scholar 

  33. Hatano SY et al (2005) Pluripotential competence of cells associated with Nanog activity. Mech Dev 122(1):67–79

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi S et al (2005) Nanog expression in mouse germ cell development. Gene Expr Patterns 5(5):639–646

    Article  CAS  PubMed  Google Scholar 

  35. Payer B et al (2006) Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. Genesis 44(2):75–83

    Article  CAS  PubMed  Google Scholar 

  36. Buitrago W, Roop DR (2007) Oct-4: the almighty POUripotent regulator? J Invest Dermatol 127(2):260–262

    Article  CAS  PubMed  Google Scholar 

  37. Molyneaux KA et al (2001) Time-lapse analysis of living mouse germ cell migration. Dev Biol 240(2):488–498

    Article  CAS  PubMed  Google Scholar 

  38. Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48(5–6):537–544

    Article  CAS  PubMed  Google Scholar 

  39. Wylie C (2000) Germ cells. Curr Opin Genet Dev 10(4):410–413

    Article  CAS  PubMed  Google Scholar 

  40. Kunwar PS, Siekhaus DE, Lehmann R (2006) In vivo migration: a germ cell perspective. Annu Rev Cell Dev Biol 22:237–265

    Article  CAS  PubMed  Google Scholar 

  41. Weidinger G et al (2002) Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development 129(1):25–36

    CAS  PubMed  Google Scholar 

  42. Doitsidou M et al (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111(5):647–659

    Article  CAS  PubMed  Google Scholar 

  43. Knaut H et al (2003) A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421(6920):279–282

    Article  CAS  PubMed  Google Scholar 

  44. Boldajipour B, Raz E (2007) What is left behind–quality control in germ cell migration. Sci STKE 2007(383):pe16

    Article  PubMed  Google Scholar 

  45. Anderson R et al (2000) The onset of germ cell migration in the mouse embryo. Mech Dev 91(1–2):61–68

    Article  CAS  PubMed  Google Scholar 

  46. Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11(1):37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gu Y et al (2009) Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 136(8):1295–1303

    Article  CAS  PubMed  Google Scholar 

  48. Runyan C et al (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133(24):4861–4869

    Article  CAS  PubMed  Google Scholar 

  49. McCoshen JA, McCallion DJ (1975) A study of the primordial germ cells during their migratory phase in Steel mutant mice. Experientia 31(5):589–590

    Article  CAS  PubMed  Google Scholar 

  50. Buehr M et al (1993) Proliferation and migration of primordial germ cells in We/We mouse embryos. Dev Dyn 198(3):182–189

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi H (1977) Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bull Fac Fish Hokkaid Univ 28:57–65

    Google Scholar 

  52. Uchida D et al (2002) Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol 205(Pt 6):711–718

    PubMed  Google Scholar 

  53. Rodriguez-Mari A et al (2005) Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5(5):655–667

    Article  CAS  PubMed  Google Scholar 

  54. von Hofsten J, Larsson A, Olsson PE (2005) Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233(2):595–604

    Article  CAS  Google Scholar 

  55. Wang XG, Orban L (2007) Anti-Mullerian hormone and 11 beta-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males. Dev Dyn 236(5):1329–1338

    Article  CAS  PubMed  Google Scholar 

  56. Sun D et al (2013) Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death Dis 4, e930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Siegfried KR, Nusslein-Volhard C (2008) Germ line control of female sex determination in zebrafish. Dev Biol 324(2):277–287

    Article  CAS  PubMed  Google Scholar 

  58. Dranow DB, Tucker RP, Draper BW (2013) Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Dev Biol 376(1):43–50

    Article  CAS  PubMed  Google Scholar 

  59. Weidinger G et al (2003) dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13(16):1429–1434

    Article  CAS  PubMed  Google Scholar 

  60. Slanchev K et al (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102(11):4074–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tzung KW et al (2015) Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep 4(1):61–73

    Article  CAS  Google Scholar 

  62. Houwing S et al (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82

    Article  CAS  PubMed  Google Scholar 

  63. Gill ME et al (2011) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci U S A 108(18):7443–7448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin Y et al (2008) Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322(5908):1685–1687

    Article  CAS  PubMed  Google Scholar 

  65. Hajkova P et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1–2):15–23

    Article  CAS  PubMed  Google Scholar 

  66. Bullejos M, Koopman P (2001) Spatially dynamic expression of Sry in mouse genital ridges. Dev Dyn 221(2):201–205

    Article  CAS  PubMed  Google Scholar 

  67. Hacker A et al (1995) Expression of Sry, the mouse sex determining gene. Development 121(6):1603–1614

    CAS  PubMed  Google Scholar 

  68. Jeske YW et al (1995) Expression of a linear Sry transcript in the mouse genital ridge. Nat Genet 10(4):480–482

    Article  CAS  PubMed  Google Scholar 

  69. Houston CS et al (1983) The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al in 1971. Am J Med Genet 15(1):3–28

    Article  CAS  PubMed  Google Scholar 

  70. Barrionuevo F et al (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74(1):195–201

    Article  CAS  PubMed  Google Scholar 

  71. Chaboissier MC et al (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131(9):1891–1901

    Article  CAS  PubMed  Google Scholar 

  72. Anderson EL et al (2008) Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A 105(39):14976–14980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koubova J et al (2006) Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A 103(8):2474–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bowles J et al (2006) Retinoid signaling determines germ cell fate in mice. Science 312(5773):596–600

    Article  CAS  PubMed  Google Scholar 

  75. Kim S, Bardwell VJ, Zarkower D (2007) Cell type-autonomous and non-autonomous requirements for Dmrt1 in postnatal testis differentiation. Dev Biol 307(2):314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Raymond CS et al (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matson CK et al (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476(7358):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lindeman RE et al (2015) Sexual cell-fate reprogramming in the ovary by DMRT1. Curr Biol 25(6):764–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frazier AL, Amatruda JF (2009) Germ cell tumors. In: Fisher DE, Nathan D, Look AT (eds) Nathan and Oski’s textbook of pediatric hematology-oncology. Elsevier, London

    Google Scholar 

  80. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5(3):210–222

    Article  CAS  PubMed  Google Scholar 

  81. Poynter JN, Amatruda JF, Ross JA (2010) Trends in incidence and survival of pediatric and adolescent patients with germ cell tumors in the United States, 1975 to 2006. Cancer 116(20):4882–4891

    Article  PubMed  PubMed Central  Google Scholar 

  82. Trabert B et al (2015) International patterns and trends in testicular cancer incidence, overall and by histologic subtype, 1973–2007. Andrology 3(1):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jacobsen R et al (2006) Trends in testicular cancer incidence in the Nordic countries, focusing on the recent decrease in Denmark. Int J Androl 29(1):199–204

    Article  PubMed  Google Scholar 

  84. Ross JA et al (1999) Genomic imprinting of H19 and insulin-like growth factor-2 in pediatric germ cell tumors. Cancer 85(6):1389–1394

    Article  CAS  PubMed  Google Scholar 

  85. Schneider DT et al (2001) Multipoint imprinting analysis indicates a common precursor cell for gonadal and nongonadal pediatric germ cell tumors. Cancer Res 61(19):7268–7276

    CAS  PubMed  Google Scholar 

  86. Palmer RD et al (2008) Pediatric malignant germ cell tumors show characteristic transcriptome profiles. Cancer Res 68(11):4239–4247

    Article  CAS  PubMed  Google Scholar 

  87. Williams SD et al (1987) Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N Engl J Med 316(23):1435–1440

    Article  CAS  PubMed  Google Scholar 

  88. Einhorn LH, Donohue JP (1977) Improved chemotherapy in disseminated testicular cancer. J Urol 117(1):65–69

    CAS  PubMed  Google Scholar 

  89. Einhorn LH (2002) Chemotherapeutic and surgical strategies for germ cell tumors. Chest Surg Clin N Am 12(4):695–706

    Article  PubMed  Google Scholar 

  90. Osanto S et al (1992) Long-term effects of chemotherapy in patients with testicular cancer. J Clin Oncol Off J Am Soc Clin Oncol 10(4):574–579

    CAS  Google Scholar 

  91. Bokemeyer C et al (1996) Evaluation of long-term toxicity after chemotherapy for testicular cancer. J Clin Oncol Off J Am Soc Clin Oncol 14(11):2923–2932

    CAS  Google Scholar 

  92. Bosl GJ et al (1986) Increased plasma renin and aldosterone in patients treated with cisplatin-based chemotherapy for metastatic germ-cell tumors. J Clin Oncol Off J Am Soc Clin Oncol 4(11):1684–1689

    CAS  Google Scholar 

  93. Hansen SW et al (1988) Long-term effects on renal function and blood pressure of treatment with cisplatin, vinblastine, and bleomycin in patients with germ cell cancer. J Clin Oncol Off J Am Soc Clin Oncol 6(11):1728–1731

    CAS  Google Scholar 

  94. Hansen PV, Hansen SW (1993) Gonadal function in men with testicular germ cell cancer: the influence of cisplatin-based chemotherapy. Eur Urol 23(1):153–156

    CAS  PubMed  Google Scholar 

  95. Hansen SW, Berthelsen JG, von der Maase H (1990) Long-term fertility and Leydig cell function in patients treated for germ cell cancer with cisplatin, vinblastine, and bleomycin versus surveillance. J Clin Oncol Off J Am Soc Clin Oncol 8(10):1695–1698

    CAS  Google Scholar 

  96. Huddart RA et al (2003) Cardiovascular disease as a long-term complication of treatment for testicular cancer. J Clin Oncol Off J Am Soc Clin Oncol 21(8):1513–1523

    Article  CAS  Google Scholar 

  97. Strumberg D et al (2002) Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol Off J Eur Soc Med Oncol ESMO 13(2):229–236

    Article  CAS  Google Scholar 

  98. Berger CC et al (1996) Endocrinological late effects after chemotherapy for testicular cancer. Br J Cancer 73(9):1108–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bissett D et al (1990) Long-term sequelae of treatment for testicular germ cell tumours. Br J Cancer 62(4):655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gietema JA et al (1992) Long-term follow-up of cardiovascular risk factors in patients given chemotherapy for disseminated nonseminomatous testicular cancer. Ann Intern Med 116(9):709–715

    Article  CAS  PubMed  Google Scholar 

  101. Teutsch C, Lipton A, Harvey HA (1977) Raynaud’s phenomenon as a side effect of chemotherapy with vinblastine and bleomycin for testicular carcinoma. Cancer Treat Rep 61(5):925–926

    CAS  PubMed  Google Scholar 

  102. Vogelzang NJ et al (1981) Raynaud's phenomenon: a common toxicity after combination chemotherapy for testicular cancer. Ann Intern Med 95(3):288–292

    Article  CAS  PubMed  Google Scholar 

  103. Boyer M et al (1990) Lack of late toxicity in patients treated with cisplatin-containing combination chemotherapy for metastatic testicular cancer. J Clin Oncol Off J Am Soc Clin Oncol 8(1):21–26

    CAS  Google Scholar 

  104. Siviero-Miachon AA, Spinola-Castro AM, Guerra-Junior G (2009) Adiposity in childhood cancer survivors: insights into obesity physiopathology. Arq Bras Endocrinol Metabol 53(2):190–200

    Article  PubMed  Google Scholar 

  105. Siviero-Miachon AA, Spinola-Castro AM, Guerra-Junior G (2008) Detection of metabolic syndrome features among childhood cancer survivors: a target to prevent disease. Vasc Health Risk Manag 4(4):825–836

    PubMed  PubMed Central  Google Scholar 

  106. Glendenning JL et al (2010) Long-term neurologic and peripheral vascular toxicity after chemotherapy treatment of testicular cancer. Cancer 116(10):2322–2331

    CAS  PubMed  Google Scholar 

  107. Travis LB et al (1997) Risk of second malignant neoplasms among long-term survivors of testicular cancer. J Natl Cancer Inst 89(19):1429–1439

    Article  CAS  PubMed  Google Scholar 

  108. Travis LB et al (2005) Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst 97(18):1354–1365

    Article  PubMed  Google Scholar 

  109. van Echten J et al (1995) No recurrent structural abnormalities apart from i(12p) in primary germ cell tumors of the adult testis. Genes Chromosomes Cancer 14(2):133–144

    Article  PubMed  Google Scholar 

  110. Tian Q et al (1999) Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 154(6):1643–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Looijenga LH et al (2003) Stem cell factor receptor (c-KIT) codon 816 mutations predict development of bilateral testicular germ-cell tumors. Cancer Res 63(22):7674–7678

    CAS  PubMed  Google Scholar 

  112. Kemmer K et al (2004) KIT mutations are common in testicular seminomas. Am J Pathol 164(1):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hoei-Hansen CE et al (2007) Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer 6:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Coffey J et al (2008) Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: report of 220 tumors and review of literature. Genes Chromosomes Cancer 47(1):34–42

    Article  CAS  PubMed  Google Scholar 

  115. Hersmus R et al (2012) Prevalence of c-KIT mutations in gonadoblastoma and dysgerminomas of patients with disorders of sex development (DSD) and ovarian dysgerminomas. PLoS One 7(8), e43952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ganguly S et al (1990) Detection of preferential NRAS mutations in human male germ cell tumors by the polymerase chain reaction. Genes Chromosomes Cancer 1(3):228–232

    Article  CAS  PubMed  Google Scholar 

  117. Mulder MP, et al. (1991) Frequent occurrence of activated ras oncogenes in seminomas but not in nonseminomatous germ cell tumors. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 123, pp 125–31

    Google Scholar 

  118. Moul JW, Theune SM, Chang EH (1992) Detection of RAS mutations in archival testicular germ cell tumors by polymerase chain reaction and oligonucleotide hybridization. Genes Chromosomes Cancer 5(2):109–118

    Article  CAS  PubMed  Google Scholar 

  119. Olie RA et al (1995) N- and KRAS mutations in primary testicular germ cell tumors: incidence and possible biological implications. Genes Chromosomes Cancer 12(2):110–116

    Article  CAS  PubMed  Google Scholar 

  120. Wang L et al (2014) Novel somatic and germline mutations in intracranial germ cell tumours. Nature 511(7508):241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Honecker F et al (2009) Microsatellite instability, mismatch repair deficiency, and BRAF mutation in treatment-resistant germ cell tumors. J Clin Oncol Off J Am Soc Clin Oncol 27(13):2129–2136

    Article  CAS  Google Scholar 

  122. Brabrand S et al (2015) Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages. Neoplasia 17(2):167–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Litchfield K et al (2015) Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat Commun 6:5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kanetsky PA et al (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41(7):811–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rapley EA et al (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41(7):807–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Turnbull C et al (2010) Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 42(7):604–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kratz CP et al (2011) Variants in or near KITLG, BAK1, DMRT1, and TERT-CLPTM1L predispose to familial testicular germ cell tumour. J Med Genet 48(7):473–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lessel D et al (2012) Replication of genetic susceptibility loci for testicular germ cell cancer in the Croatian population. Carcinogenesis 33(8):1548–1552

    Article  CAS  PubMed  Google Scholar 

  129. Karlsson R et al (2013) Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4. Hum Mol Genet 22(16):3373–3380

    Article  CAS  PubMed  Google Scholar 

  130. Chung CC et al (2013) Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat Genet 45(6):680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ruark E et al (2013) Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14. Nat Genet 45(6):686–689

    Article  CAS  PubMed  Google Scholar 

  132. Stevens LC (1970) Experimental production of testicular teratomas in mice of strains 129, A/He, and their F1 hybrids. J Natl Cancer Inst 44(4):923–929

    CAS  PubMed  Google Scholar 

  133. Youngren KK et al (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Krentz AD et al (2013) Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Dev Biol 377(1):67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Krentz AD et al (2009) The DM domain protein DMRT1 is a dose-sensitive regulator of fetal germ cell proliferation and pluripotency. Proc Natl Acad Sci U S A 106(52):22323–22328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morinaga C et al (2007) The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci U S A 104(23):9691–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Neumann JC et al (2009) Identification of a heritable model of testicular germ cell tumor in the zebrafish. Zebrafish 6(4):319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Neumann JC et al (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 108(32):13153–13158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fustino N et al (2011) Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. Int J Androl 34(4 Pt 2):e218–e233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gill JA et al (2010) Enforced expression of Simian virus 40 large T-antigen leads to testicular germ cell tumors in zebrafish. Zebrafish 7(4):333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van Rooijen E et al (2008) LRRC50, a conserved ciliary protein implicated in polycystic kidney disease. J Am Soc Nephrol 19(6):1128–1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Basten SG et al (2013) Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet 9(4), e1003384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Amatruda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sanchez, A., Amatruda, J.F. (2016). Zebrafish Germ Cell Tumors. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_21

Download citation

Publish with us

Policies and ethics