Skip to main content

Silicon Carbide Nanowires and Electronics

  • Chapter
  • First Online:
Nanowire Electronics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Silicon carbide (SiC) is recognized as one of the most important candidates of the third-generation semiconductors, owing to their superior properties such as outstanding mechanical properties, excellent chemical inertness, high thermal stability, as well as high thermal conductivity, which allow the SiC materials having the unique advantage to serve under high-temperature/high-voltage/high-power harsh environments. In this chapter, firstly, we presented a comprehensive overview on the recent advances with respect to the rational design and growth of SiC nanowires with different morphologies and dopings. Secondly, we highlighted the electronics of the SiC nanowires associated with their potential applications in field emission emitters, supercapacitors, photocatalysts, field-effect transistors, and pressure sensors. Finally, we made personal perspectives on the future research interests and directions of the SiC nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia Y, Yang P, Sun Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  2. Yang P, Yan R, Fardy M (2010) Semiconductor nanowire: what is next? Nano Lett 10:1529–1536

    Article  CAS  Google Scholar 

  3. Hochbaum A, Yang P (2009) Semiconductor nanowires for energy conversion. Chem Rev 110:527–546

    Article  CAS  Google Scholar 

  4. Shen G, Chen P, Ryu K et al (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19:828–839

    Article  CAS  Google Scholar 

  5. Zhai T, Li L, Ma Y et al (2011) One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. Chem Soc Rev 40:2986–3004

    Article  CAS  Google Scholar 

  6. Hsu C, Chang S (2014) Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application. Small 10:4562–4585

    Article  CAS  Google Scholar 

  7. Dai H, Wong E, Lu Y et al (2003) Synthesis and characterization of carbide nanorods. Nature 375:769–772

    Article  Google Scholar 

  8. Johnson J, Choi H, Knutsen K et al (2002) Single gallium nitride nanowire lasers. Nat Mater 1:106–110

    Article  CAS  Google Scholar 

  9. Cheng G, Chang T, Qin Q et al (2014) Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett 14:754–758

    Article  CAS  Google Scholar 

  10. Li Y, Dorozhkin P, Bando Y et al (2005) Controllable modification of SiC nanowires encapsulated in BN nanotubes. Adv Mater 17:545–549

    Article  CAS  Google Scholar 

  11. Jie J, Zhang W, Bello I et al (2010) One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5:313–336

    Article  CAS  Google Scholar 

  12. Fang X, Wu L, Hu L (2011) ZnS nanostructure arrays: a developing material star. Adv Mater 23:585–598

    Article  CAS  Google Scholar 

  13. Prakash J, Venugopalan R, Tripathi B et al (2015) Chemistry of one dimensional silicon carbide materials: principle, production, application and future prospects. Prog Solid State Ch 43:98–122

    Article  CAS  Google Scholar 

  14. Zekentes K, Rogdakis K (2011) SiC nanowires: material and devices. J Phys D Appl Phys 44:133001

    Article  CAS  Google Scholar 

  15. Zhou W, Zhang Y, Niu X et al (2008) One-dimensional SiC nanostructures: synthesis and properties, One-Dimensional Nanostructures. Springer, New York, pp 17–59

    Book  Google Scholar 

  16. Borowiak-Palen E, Ruemmeli M, Gemming T et al (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102

    Article  CAS  Google Scholar 

  17. Round H (1997) A note on carborundum. Electr World 49:309

    Google Scholar 

  18. Janzen E, Kordina O, Henry A et al (1994) SiC-A semiconductor for high-power, high-temperature and high-frequency devices. Phys Scr 1994:283

    Article  Google Scholar 

  19. Nakamura D, Gunjishima I, Yamaguchi S et al (2004) Ultrahigh-quality silicon carbide single crystals. Nature 430:1009–1012

    Article  CAS  Google Scholar 

  20. Wong E, Sheehan P, Lieber C et al (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  CAS  Google Scholar 

  21. Deng S, Li Z, Wang W et al (2006) Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate. Appl Phys Lett 89:023118-023118-3

    Google Scholar 

  22. Zhang Y, Han X, Zheng K et al (2007) Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv Funct Mater 17:3435–3440

    Article  CAS  Google Scholar 

  23. Pan Z, Lai H, Au F et al (2000) Oriented silicon carbide nanowires: synthesis and field emission properties. Adv Mater 12:1186–1190

    Article  CAS  Google Scholar 

  24. Yang W, Araki H, Tang C et al (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523

    Article  CAS  Google Scholar 

  25. Chen S, Ying P, Wang L et al (2014) Temperature-dependent field emission of flexible n-type silicon carbide nanoneedle emitters. Appl Phys Lett 105:133106

    Article  CAS  Google Scholar 

  26. Xu N, Deng S, Chen J (2003) Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy 95:19–28

    Article  CAS  Google Scholar 

  27. Casady J, Johnson R (1996) Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron 39:1409–1422

    Article  Google Scholar 

  28. Sun Y, Cui H, Yang G et al (2010) The synthesis and mechanism investigations of morphology controllable 1-D SiC nanostructures via a novel approach. CrystEngComm 12:1134–1138

    Article  CAS  Google Scholar 

  29. Fan J, Wu X, Chu P (2006) Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog Mater Sci 51:983–1031

    Article  CAS  Google Scholar 

  30. Gu L, Wang Y, Fang Y et al (2013) Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric. J Power Sources 243:648–653

    Article  CAS  Google Scholar 

  31. Chang C, Hsia B, Alper J et al (2015) High-temperature all solid-state microsupercapacitors based on SiC nanowire electrode and YSZ electrolyte. ACS Appl Mater Inter 7:26658–26665

    Article  CAS  Google Scholar 

  32. Chen Y, Zhang X, Zhao Q et al (2011) p-type 3C-SiC nanowires and their optical and electrical transport properties. Chem Commun 47:6398–6400

    Article  CAS  Google Scholar 

  33. Hao J, Wang Y, Tong X et al (2012) Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int J Hydrogen Energy 37:15038–15044

    Article  CAS  Google Scholar 

  34. Yang T, Chang X, Chen J et al (2015) B-doped 3C-SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 7:8955–8961

    Article  CAS  Google Scholar 

  35. Hao Y, Wagner J, Su D et al (2006) Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel. Nanotechnology 17:2870

    Article  CAS  Google Scholar 

  36. Shen G, Bando Y, Ye C et al (2006) Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires. Nanotechnology 17:3468–3472

    Article  CAS  Google Scholar 

  37. Wu R, Pan Y, Yang G et al (2007) Twinned SiC zigzag nanoneedles. J Phys Chem C 111:6233–6237

    Article  CAS  Google Scholar 

  38. Wu C, Liao X, Chen J (2010) The formation of symmetric SiC bi-nanowires with a Y-shaped junction. Nanotechnology 21:405303

    Article  CAS  Google Scholar 

  39. Liu B, Bando Y, Tang C et al (2008) Mn-Si-catalyzed synthesis and tip-end-induced room temperature ferromagnetism of SiC/SiO2 core-shell heterostructures. J Phys Chem C 112:18911–18915

    Article  CAS  Google Scholar 

  40. Liu H, Huang Z, Huang J et al (2014) Thermal evaporation synthesis of SiC/SiOx nanochain heterojunctions and their photoluminescence properties. J Mater Chem C 2:7761–7767

    Article  CAS  Google Scholar 

  41. Qi X, Zhai G, Liang J et al (2014) Preparation and characterization of SiC@CNT coaxial nanocables using CNTs as a template. CrystEngComm 16:9697–9703

    Article  CAS  Google Scholar 

  42. Wang L, Li C, Yang Y et al (2015) Large-scale growth of well-aligned SiC tower-like nanowire arrays and their field emission properties. ACS Appl Mater Interfaces 7:526–533

    Article  CAS  Google Scholar 

  43. Gao F, Yang W, Wang H et al (2008) Controlled Al-doped single-crystalline 6H-SiC nanowires. Cryst Growth Des 8:1461–1464

    Article  CAS  Google Scholar 

  44. Chen S, Ying P, Wang L et al (2013) Growth of flexible N-doped SiC quasialigned nanoarrays and their field emission properties. J Mater Chem C 1:4779–4784

    Article  CAS  Google Scholar 

  45. Chen S, Shang M, Yang Z et al (2016) Current emission from P-doped SiC nanowires with ultralow turn-on fields. J Mater Chem C 4:7391–7396

    Article  CAS  Google Scholar 

  46. Chen S, Ying P, Wang L et al (2015) Highly flexible and robust N-doped SiC nanoneedle field emitters. NPG Asia Mater 7:e157

    Article  CAS  Google Scholar 

  47. He Z, Wang L, Gao F et al (2013) Synthesis of n-type SiC nanowires with tailored doping levels. CrystEngComm 15:2354–2358

    Article  CAS  Google Scholar 

  48. Feng W, Ma J, Yang W (2012) Precise control on the growth of SiC nanowires. CrystEngComm 14:1210–1212

    Article  CAS  Google Scholar 

  49. Wang L, Gao F, Chen S et al (2015) Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays. Appl Phys Lett 107:122108

    Article  CAS  Google Scholar 

  50. Wu R, Li B, Gao M et al (2008) Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties. Nanotechnology 19:335602

    Article  CAS  Google Scholar 

  51. Cheong K, Lockman Z (2009) Effects of temperature and crucible height on the synthesis of 6H-SiC nanowires and nanoneedles. J Alloys Compd 481:345–348

    Article  CAS  Google Scholar 

  52. Chen S, Ying P, Wang L et al (2014) Controlled growth of SiC flexible field emitters with clear and sharp tips. RSC Adv 4:8376–8382

    Article  CAS  Google Scholar 

  53. Wang H, Xie Z, Yang W et al (2008) Morphology control in the vapor-liquid-solid growth of SiC nanowires. Cryst Growth Des 8:3893–3896

    Article  CAS  Google Scholar 

  54. Wang H, Lin L, Yang W et al (2010) Preferred orientation of SiC nanowires induced by substrates. J Phys Chem C 114:2591–2594

    Article  CAS  Google Scholar 

  55. Zhang M, Li Z, Zhao J et al (2015) Amorphous carbon coating for improving the field emission performance of SiC nanowire cores. J Mater Chem C 3:658–663

    Article  CAS  Google Scholar 

  56. Li Z, Li W, Wang X et al (2014) Improving field-emission properties of SiC nanowires treated by H2 and N2 plasma. Phys Status Solidi A 7:1550–1554

    Article  CAS  Google Scholar 

  57. Wu R, Zhou K, Wei J et al (2012) Growth of tapered SiC nanowires on flexible carbon fabric: toward field emission applications. J Phys Chem C 116:12940–12945

    Article  CAS  Google Scholar 

  58. Krishnan B, Thirumalai R, Koshka Y et al (2011) Substrate-dependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates. Cryst Growth Des 11:538–541

    Article  CAS  Google Scholar 

  59. Li Z, Ren W, Meng A (2010) Morphology-dependent field emission characteristics of SiC nanowires. Appl Phys Lett 97:263117-263117-3

    Google Scholar 

  60. Li G, Li X, Chen Z et al (2009) Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route. J Phys Chem C 113:17655–17660

    Article  CAS  Google Scholar 

  61. Niu J, Wang J (2009) Synthesis of macroscopic SiC nanowires at the gram level and their electrochemical activity with Pt loadings. Acta Mater 57:3084–3090

    Article  CAS  Google Scholar 

  62. Yang G, Cui H, Sun Y et al (2009) Simple catalyst-free method to the synthesis of β-SiC nanowires and their field emission properties. J Phys Chem C 113:15969–15973

    Article  CAS  Google Scholar 

  63. Wang D, Xu D, Wang Q et al (2008) Periodically twinned SiC nanowires. Nanotechnology 19:215602

    Article  CAS  Google Scholar 

  64. Ryu Y, Park B, Song Y et al (2004) Carbon-coated SiC nanowires: direct synthesis from Si and field emission characteristics. J Cryst Growth 271:99–104

    Article  CAS  Google Scholar 

  65. Tang C, Bando Y (2003) Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl Phys Lett 83:659–661

    Article  CAS  Google Scholar 

  66. Wong K, Zhou X, Au F et al (1999) Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition. Appl Phys Lett 75:2918–2920

    Article  CAS  Google Scholar 

  67. Chen Q, Chen S, Gao F et al (2016) Enhanced field emission of Au nanoparticle-decorated SiC nanowires. J Mater Chem C 4:1363–1368

    Article  CAS  Google Scholar 

  68. Dong Q, Chen S, Chen Q et al (2016) Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires. Appl Phys Lett 109:082104

    Article  CAS  Google Scholar 

  69. Hou H, Gao F, Wei G et al (2011) Electrospinning 3C-SiC mesoporous fibers with high purities and well-controlled structures. Cryst Growth Des 12:536–539

    Article  CAS  Google Scholar 

  70. Yang W, Miao H, Xie Z et al (2004) Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor. Chem Phys Lett 383:441–444

    Article  CAS  Google Scholar 

  71. Hou H, Wang L, Gao F et al (2013) Mass production of SiC/SiOx nanochain heterojunctions with high purities. CrystEngComm 15:2986–2991

    Article  CAS  Google Scholar 

  72. Wang X, Tang B, Gao F et al (2011) Large-scale synthesis of hydrophobic SiC/C nanocables with enhanced electrical properties. J Phys D Appl Phys 44:245404

    Article  CAS  Google Scholar 

  73. Chen D, Liu Z, Liang B et al (2012) Transparent metal oxide nanowire transistors. Nanoscale 4:3001–3012

    Article  CAS  Google Scholar 

  74. Wei G, Qin W, Zheng K et al (2009) Synthesis and properties of SiC/SiO2 nanochain heterojunctions by microwave method. Cryst Growth Des 9:1431–1435

    Article  CAS  Google Scholar 

  75. Qian B, Li H, Yang Z et al (2012) Inverted SiC nanoneedles grown on carbon fibers by a two-crucible method without catalyst. J Cryst Growth 338:6–11

    Article  CAS  Google Scholar 

  76. Meng A, Zhang M, Zhang J et al (2012) Synthesis and field emission properties of silicon carbide nanobelts with a median ridge. CrystEngComm 14:6755–6760

    Article  CAS  Google Scholar 

  77. Fang X, Zhai T, Gautam U et al (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287

    Article  CAS  Google Scholar 

  78. Zou G, Li H, Zhang Y et al (2006) Solvothermal/hydrothermal route to semiconductor nanowires. Nanotechnology 17:S313

    Article  CAS  Google Scholar 

  79. Lu Q, Hu J, Tang K et al (1999) Growth of SiC nanorods at low temperature. Appl Phys Lett 75:507–509

    Article  CAS  Google Scholar 

  80. Xi G, Liu Y, Liu X et al (2003) Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures. J Phys Chem B 110:14172–14178

    Article  CAS  Google Scholar 

  81. Ju Z, Xing Z, Guo C et al (2008) Sulfur-assisted approach for the low-temperature synthesis of β-SiC nanowires. Eur J Inorg Chem 24:3883–3888

    Article  CAS  Google Scholar 

  82. Langa S, Carstensen J, Tiginyanu I et al (2001) Self-induced voltage oscillations during anodic etching of n-InP and possible applications for three-dimensional microstructures. Electrochemical and Solid-State Lett 4:G50–G52

    Article  CAS  Google Scholar 

  83. Gautier G, Cayrel F, Capelle M et al (2012) Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces. Nanoscale Res Lett 7:367

    Article  Google Scholar 

  84. Shishkin Y, Ke Y, Devaty R et al (2005) Fabrication and morphology of porous p-type SiC. J Appl Phys 97:044908

    Article  CAS  Google Scholar 

  85. Cao A, Luong Q, Dao C (2014) Influence of the anodic etching current density on the morphology of the porous SiC layer. AIP Adv 4:037105

    Article  CAS  Google Scholar 

  86. Shishkin Y, Choyke W, Devaty R (2004) Photoelectrochemical etching of n-type 4H silicon carbide. J Appl Phys 96:2311–2322

    Article  CAS  Google Scholar 

  87. Ke Y, Yan F, Devaty R et al (2009) Surface polishing by electrochemical etching of p-type 4H SiC. J Appl Phys 106:064901

    Article  CAS  Google Scholar 

  88. Tan J, Chen Z, Lu W et al (2014) Fabrication of uniform 4H-SiC mesopores by pulsed electrochemical etching. Nanoscale Res Lett 9:1–5

    Article  CAS  Google Scholar 

  89. Zheng H, Zhang Y, Yan Y et al (2014) Experimental observation and theoretical calculation of magnetic properties in Fe-doped cubic SiC nanowires. Carbon 78:288–297

    Article  CAS  Google Scholar 

  90. Chen Y, Zhang X, Xie Z (2015) Flexible nitrogen doped SiC nanoarray for ultrafast capacitive energy storage. ACS Nano 9:8054–8063

    Article  CAS  Google Scholar 

  91. Yang T, Zhang L, Hou X et al (2016) Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively. Sci Rep 6:24872

    Article  CAS  Google Scholar 

  92. Zhang X, Chen Y, Liu W et al (2013) Growth of n-type 3C-SiC nanoneedles on carbon fabric: toward extremely flexible field emission devices. J Mater Chem C 1:6479–6486

    Article  CAS  Google Scholar 

  93. Zhang X, Chen Y, Xie Z et al (2010) Shape and doping enhanced field emission properties of quasialigned 3C-SiC nanowires. J Phys Chem C 114:8251–8255

    Article  CAS  Google Scholar 

  94. Li X, Chen S, Ying P et al (2016) A giant negative piezoresistance effect in 3C-SiC nanowires with B dopants. J Mater Chem C 4:6466–6472

    Article  CAS  Google Scholar 

  95. Wang L, Wei G, Gao F et al (2015) High-temperature stable field emission of B-doped SiC nanoneedle arrays. Nanoscale 7:7585–7592

    Article  CAS  Google Scholar 

  96. Li S, Wang N, Zhao H et al (2014) Synthesis and electrical properties of p-type 3C-SiC nanowires. Mater Lett 126:217–219

    Article  CAS  Google Scholar 

  97. Yang Y, Yang H, Wei G et al (2014) Enhanced field emission of p-type 3C-SiC nanowires with B dopants and sharp corners. J Mater Chem C 2:4515–4520

    Article  CAS  Google Scholar 

  98. Xu Z, Zheng Q, Su G (2011) Thermoelectric properties of silicon carbide nanowires with nitride dopants and vacancies. Phys Rev B 84:245451

    Article  CAS  Google Scholar 

  99. Tian Y, Zheng H, Liu X et al (2012) Microstructure and magnetic properties of Mn-doped 3C-SiC nanowires. Mater Lett 76:219–221

    Article  CAS  Google Scholar 

  100. Seong H, Park T, Lee S et al (2009) Magnetic properties of vanadium-doped silicon carbide nanowires. Met Mater Int 15:107–111

    Article  CAS  Google Scholar 

  101. Gao F, Feng W, Wei G et al (2012) Triangular prism-shaped p-type 6H-SiC nanowires. CrystEngComm 14:488–491

    Article  CAS  Google Scholar 

  102. Wei G, Liu H, Shi C et al (2011) Temperature-dependent field emission properties of 3C-SiC nanoneedles. J Phys Chem C 115:13063–13068

    Article  CAS  Google Scholar 

  103. Cui Y, Lieber C (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  CAS  Google Scholar 

  104. Sun S, Murray C, Weller D et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  105. Wang Z, Gong J, Su Y et al (2010) Six-fold-symmetrical hierarchical ZnO nanostructure arrays: synthesis, characterization, and field emission properties. Cryst Growth Des 10:2455–2459

    Article  CAS  Google Scholar 

  106. Yin L, Bando Y, Zhu Y et al (2005) Growth and field emission of hierarchical single-crystalline wurtzite AlN nanoarchitectures. Adv Mater 17:110–114

    Article  CAS  Google Scholar 

  107. Zhang J, Yang Y, Jiang F et al (2006) Fabrication, structural characterization and photoluminescence of Q-1D semiconductor ZnS hierarchical nanostructures. Nanotechnology 17:2695

    Article  CAS  Google Scholar 

  108. Zhang J, Chen J, Xin L et al (2014) Hierarchical 3C-SiC nanowires as stable photocatalyst for organic dye degradation under visible light irradiation. Mat Sci Eng B 179:6–11

    Article  CAS  Google Scholar 

  109. Xin L, Shi Q, Chen J et al (2012) Morphological evolution of one-dimensional SiC nanomaterials controlled by sol-gel carbothermal reduction. Mater Charact 65:55–61

    Article  CAS  Google Scholar 

  110. Shen G, Bando Y, Golberg D (2007) Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Cryst Growth Des 7:35–38

    Article  CAS  Google Scholar 

  111. Guo J, Zuo Y, Li Z et al (2007) Preparation of SiC nanowires with fins by chemical vapor deposition. Phys E 39:262–266

    Article  CAS  Google Scholar 

  112. Wu R, Chen J, Yang G et al (2008) Self-assembled one-dimensional hierarchical SiC nanostructures: microstructure, growth mechanism, and optical properties. J Cryst Growth 310:3573–3578

    Article  CAS  Google Scholar 

  113. Wu R, Yang G, Pan Y et al (2007) Thermal evaporation and solution strategies to novel nanoarchitectures of silicon carbide. Appl Phys A Mater Sci Process 88:679–685

    Article  CAS  Google Scholar 

  114. Cambaz G, Yushin G, Gogotsi Y et al (2006) Anisotropic etching of SiC whiskers. Nano Lett 6:548–551

    Article  CAS  Google Scholar 

  115. Zhao B, Yang B, Wang T et al (2013) Nanocarbon-dependent synthesis of one-dimensional bead-chain-like β-SiC. Powder Technol 246:487–491

    Article  CAS  Google Scholar 

  116. Meng A, Zhang M, Gao W et al (2011) Large-scale synthesis of β-SiC nanochains and their raman/photoluminescence properties. Nanoscale Res Lett 6:1–7

    Article  CAS  Google Scholar 

  117. Li Z, Shi T, Tan D (2010) Long β-silicon carbide necklace-like whiskers prepared by carbothermal reduction of wood flour/silica/phenolic composite. J Am Ceram Soc 93:3499–3503

    Article  CAS  Google Scholar 

  118. Wei J, Li K, Li H et al (2006) Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant. Mater Chem Phys 95:140–144

    Article  CAS  Google Scholar 

  119. Pozuelo M, Kao W, Yang J (2013) High-resolution TEM characterization of SiC nanowires as reinforcements in a nanocrystalline Mg-matrix. Mater Charact 77:81–88

    Article  CAS  Google Scholar 

  120. Zhang M, Zhao J, Li Z et al (2016) Bamboo-like 3C-SiC nanowires with periodical fluctuating diameter: homogeneous synthesis, synergistic growth mechanism, and their luminescence properties. J Solid State Chem 243:247–252

    Article  CAS  Google Scholar 

  121. Hu W, Wang L, Wu Q et al (2014) Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis. J Mater Sci Mater Electron 25:5302–5308

    Article  CAS  Google Scholar 

  122. Chu Y, Li H, Fu Q et al (2013) Bamboo-shaped SiC nanowire-toughened SiC coating for oxidation protection of C/C composites. Corros Sci 70:11–16

    Article  CAS  Google Scholar 

  123. Chen J, Shi Q, Gao L et al (2010) Large-scale synthesis of ultralong single-crystalline SiC nanowires. Phys Status Solidi A 207:2483–2486

    Article  CAS  Google Scholar 

  124. Hao Y, Jin G, Han X et al (2006) Synthesis and characterization of bamboo-like SiC nanofibers. Mater Lett 60:1334–1337

    Article  CAS  Google Scholar 

  125. Wang D, Xu D, Wang Q et al (2008) Periodically twinned SiC nanowires. Nanotechnology 19:215602

    Article  CAS  Google Scholar 

  126. Choi H, Seong H, Lee J et al (2004) Growth and modulation of silicon carbide nanowires. J Cryst Growth 269:472–478

    Article  CAS  Google Scholar 

  127. Wang Z, Li J, Gao F et al (2010) Tensile and compressive mechanical behavior of twinned silicon carbide nanowires. Acta Mater 58:1963–1971

    Article  CAS  Google Scholar 

  128. Li Z, Wang S, Wang Z et al (2010) Mechanical behavior of twinned SiC nanowires under combined tension-torsion and compression-torsion strain. J Appl Phys 108:013504

    Article  CAS  Google Scholar 

  129. Duan W, Yin X, Cao F et al (2015) Absorption properties of twinned SiC nanowires reinforced Si3N4 composites fabricated by 3D-prining. Mater Lett 159:257–260

    Article  CAS  Google Scholar 

  130. Huang Z, Liu H, Chen K et al (2014) Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method. RSC Adv 4:18360–18364

    Article  CAS  Google Scholar 

  131. Li L, Chu Y, Li H et al (2014) Periodically twinned 6H-SiC nanowires with fluctuating stems. Ceram Int 40:4455–4460

    Article  CAS  Google Scholar 

  132. Chen J, Pan Y, Wu R (2010) Growth mechanism of twinned SiC nanowires synthesized by a simple thermal evaporation method. Phys E 42:2335–2340

    Article  CAS  Google Scholar 

  133. Li J, Zhu X, Ding P et al (2009) The synthesis of twinned silicon carbide nanowires by a catalyst-free pyrolytic deposition technique. Nanotechnology 20:145602

    Article  CAS  Google Scholar 

  134. Shim H, Huang H (2007) Three-stage transition during silicon carbide nanowire growth. Appl Phys Lett 90:083106

    Article  CAS  Google Scholar 

  135. Zhou Y, Chang X, Zhou J et al (1990) Twin morphology in bicrystalline silicon carbide whiskers. Mater Lett 10:288–290

    Article  CAS  Google Scholar 

  136. Wu R, Wu L, Yang G et al (2007) Fabrication and photoluminescence of bicrystalline SiC nanobelts. J Phys D Appl Phys 40:3697

    Article  CAS  Google Scholar 

  137. Seo W, Koumoto K, Aria S (2000) Morphology and stacking faults of β-Silicon carbide whisker synthesized by carbothermal reduction. J Am Ceram Soc 83:2584–2592

    Article  CAS  Google Scholar 

  138. Tang C, Bando Y, Sato T et al (2002) SiC and its bicrystalline nanowires with uniform BN coatings. Appl Phys Lett 80:4641–4643

    Article  CAS  Google Scholar 

  139. Yin L, Bando Y, Zhu Y et al (2004) A two-stage route to coaxial cubic-aluminum-nitride–boron- nitride composite nanotubes. Adv Mater 16:929–933

    Article  CAS  Google Scholar 

  140. Zhu Y, Bando Y, Yin L (2004) Design and fabrication of BN-sheathed ZnS nanoarchitectures. Adv Mater 16:331–334

    Article  CAS  Google Scholar 

  141. Zhang Y, Suenaga K, Colliex C et al (1998) Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science 281:973–975

    Article  CAS  Google Scholar 

  142. Wang X, Tian J, Bao L et al (2007) Large scale SiC-SiOx nanocables: synthesis, photoluminescence, and field emission properties. J Appl Phys 102:014309

    Article  CAS  Google Scholar 

  143. Kwak G, Lee M, Senthil K et al (2010) Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires. Langmuir 26:12273–12277

    Article  CAS  Google Scholar 

  144. Wang W, Wang Y, Gu L et al (2015) SiC@Si core-shell nanowires on carbon paper as a hybrid anode for-llithium-ion batteries. J Power Sources 293:492–497

    Article  CAS  Google Scholar 

  145. Lu W, Guo L, Jia Y et al (2014) Significant enhancement in photocatalytic activity of high quality SiC/graphene core-shell heterojunction with optimal structural parameters. RSC Adv 4:46771–46779

    Article  CAS  Google Scholar 

  146. Bechelany M, Brioude A, Stadelmann P et al (2007) Very long SiC-based coaxial nanocables with tunable chemical composition. Adv Funct Mater 17:3251–3257

    Article  CAS  Google Scholar 

  147. Filippo F, Francesca R, Paola L et al (2014) 3C-SiC nanowires luminescence enhancement by coating with a conformal oxides layer. J Phys D Appl Phys 47:394006

    Article  CAS  Google Scholar 

  148. Fang J, Aharonovich I, Levchenko I et al (2012) Plasma-enabled growth of single-crystalline SiC/AlSiC core-shell nanowires on porous alumina templates. Cryst Growth Des 12:2917–2922

    Article  CAS  Google Scholar 

  149. Negri M, Dhanabalan S, Attolini G et al (2015) Tuning the radial structure of core-shell silicon carbide nanowires. CrystEngComm 17:1258–1263

    Article  CAS  Google Scholar 

  150. Cui H, Zhou J, Yang G et al (2011) Growth, modulation and electronic properties of Al2O3-coatings SiC nanotubes via simple heating evaporation process. CrystEngComm 13:902–906

    Article  CAS  Google Scholar 

  151. Liang C, Liu C, Wang H et al (2014) SiC-Fe3O4 dielectric-magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J Mater Chem A 2:16397–16402

    Article  CAS  Google Scholar 

  152. Liu W, Chen J, Yang T et al (2016) Enhancing photoluminescence properties of SiC/SiO2 coaxial nanocables by making oxygen vacancies. Dalton Trans 45:13503–13508

    Article  CAS  Google Scholar 

  153. Ma J, Liu Y, Hao P et al (2016) Effect of different oxide thickness on the bending Youngs modulus of SiO2@SiC nanowires. Sci Rep 6:18994

    Article  CAS  Google Scholar 

  154. Li Z, Zhao J, Zhang M et al (2014) SiC nanowires with thickness-controlled SiO2 shells: fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res 7:462–472

    Article  CAS  Google Scholar 

  155. Wang B, Wang Y, Lei Y et al (2016) Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J Mater Chem C 4:295–304

    Article  CAS  Google Scholar 

  156. Hu P, Dong S, Zhang D et al (2016) Catalyst-assisted synthesis of core-shell SiC/SiO2 nanowires via a simple method. Ceram Int 42:1581–1587

    Article  CAS  Google Scholar 

  157. Zhang J, Jia Q, Zhang S et al (2013) One-step molten-salt-mediated preparation and luminescent properties of ultra-long SiC/SiO2 core-shell nanowires. Ceram Int 42:2227–2233

    Article  CAS  Google Scholar 

  158. Chen K, Fang M, Huang Z et al (2013) Catalytic synthesis and growth mechanism of SiC@SiO2 nanowires and their photoluminescence properties. CrystEngComm 15:9032–9038

    Article  CAS  Google Scholar 

  159. Qiang X, Li H, Zhang Y et al (2013) Synthesis of SiC/SiO2 nanocables by chemical vapor deposition. J Alloys Compd 572:107–109

    Article  CAS  Google Scholar 

  160. Choi Y, Park S, Choi D (2012) Gas-phase synthesis and growth mechanism of SiC/SiO2 core-shell nanowires. CrystEngComm 14:1737–1743

    Article  CAS  Google Scholar 

  161. Zhuang H, Zhang L, Staedler T et al (2012) Nanoscale integration of SiC/SiO2 core-shell nanocables in diamond through a simultaneous hybrid structure fabrication. Appl Phys Lett 100:193102

    Article  CAS  Google Scholar 

  162. Fabbri F, Rossi F, Attolini G et al (2012) Luminescence properties of SiC/SiO2 core-shell nanowires with different radial structure. Mater Lett 71:137–140

    Article  CAS  Google Scholar 

  163. Filippo F, Francesca R, Giovanni A et al (2010) Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO2 core/shell self-organized nanowires. Nanotechnology 21:345702

    Article  CAS  Google Scholar 

  164. Wang X, Zhai H, Cao C et al (2009) One-step synthesis of orientation accumulation SiC-C coaxial nanocables at low temperature. J Mater Chem 19:2958–2962

    Article  CAS  Google Scholar 

  165. Kim R, Qin W, Wei G et al (2009) Synthesis of large-scale SiC-SiO2 nanowires decorated with amorphous carbon nanoparticles and Raman and PL properties. Chem Phys Lett 475:86–90

    Article  CAS  Google Scholar 

  166. Lopez-Camacho E, Fernandez M, Gomez-Aleixandre C (2008) The key role of hydrogen in the growth of SiC/SiO2 nanocables. Nanotechnology 19:305602

    Article  CAS  Google Scholar 

  167. Li B, Wu R, Pan Y et al (2008) Simultaneous growth of SiC nanowires, SiC nanotubes, and SiC/SiO2 core-shell nanocables. J Alloy Compd 462:446–451

    Article  CAS  Google Scholar 

  168. Meng A, Li Z, Zhang J et al (2007) Synthesis and Raman scattering of β-SiC/SiO2 core-shell nanowires. J Cryst Growth 308:263–268

    Article  CAS  Google Scholar 

  169. Cai K, Zhang A, Yin J (2007) Ultra thin and ultra long SiC/SiO2 nanocables from catalytic pyrolysis of poly(dimethyl siloxane). Nanotechnology 18:485601

    Article  CAS  Google Scholar 

  170. Yang Z, Zhou W, Zhu F et al (2006) SiC/SiO2 core-shell nanocables formed on the carbon fiber felt. Mater Chem Phys 96:439–441

    Article  CAS  Google Scholar 

  171. Liu X, Yao K (2005) Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology 16:2932

    Article  CAS  Google Scholar 

  172. Zhang H, Wang C, Wang L (2002) Helical crystalline SiC/SiO2 core-shell nanowires. Nano Lett 2:941–944

    Article  CAS  Google Scholar 

  173. Hu Y, Liu X, Zhang X et al (2016) Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. Electrochim Acta 190:33–39

    Article  CAS  Google Scholar 

  174. Bechelany M, Riesterer J, Brioude A et al (2012) Rayleigh instability induced SiC/SiO2 necklace like nanostructures. CrystEngComm 14:7744–7748

    Article  CAS  Google Scholar 

  175. Sun Z, Qiao X, Ren Q et al (2016) Synthesis of SiC/SiO2 nanochains by carbonthermal reduction process and its optimization. Adv Powder Technol 27:1552–1559

    Article  CAS  Google Scholar 

  176. Liu W, Chen J, Chou K et al (2015) Large scale fabrication of dumbbell-shaped biomimetic SiC/SiO2 fibers. CrystEngComm 17:9318–9322

    Article  CAS  Google Scholar 

  177. Liu B, Yang B, Yuan F et al (2015) Defect-induced nucleation and epitaxy: a new strategy toward the rational synthesis of WZ-GaN/3C-SiC core-shell heterostructures. Nano Lett 15:7837–7846

    Article  CAS  Google Scholar 

  178. Li C, Ouyang H, Huang J et al (2014) Synthesis and visible-light photocatalytic activity of SiC/SiO2 nanochain heterojunctions. Mater Lett 122:125–128

    Article  CAS  Google Scholar 

  179. Wei J, Li K, Chen J et al (2013) Synthesis and growth mechanism of SiC/SiO2 nanochains heterostructure by catalyst-free chemical vapor deposition. J Am Ceram Soc 96:627–633

    CAS  Google Scholar 

  180. Li Z, Gao W, Meng A et al (2009) Large-scale synthesis and Raman and photoluminescence properties of single crystalline β-SiC nanowires periodically wrapped by amorphous SiO2 nanospheres. J Phys Chem C 113:91–96

    Article  CAS  Google Scholar 

  181. Li Y, Bando Y, Golberg D (2004) SiC-SiO2-C coaxial nanocables and chains of carbon nanotube-SiC heterojunctions. Adv Mater 16:93–96

    Article  CAS  Google Scholar 

  182. Nazarudin N, Azizan S, Rahman S et al (2014) Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition. Thin Solid Films 570:243–248

    Article  CAS  Google Scholar 

  183. Ollivier M, Latu-Romain L, Martin M et al (2013) Si-SiC core-shell nanowires. J Cryst Growth 363:158–163

    Article  CAS  Google Scholar 

  184. Nazarudin N, Mohd Noor N, Rahman S et al (2015) Photoluminescence and structural properties of Si/SiC core-shell nanowires growth by HWCVD. J Lumin 157:149–157

    Article  CAS  Google Scholar 

  185. Goh B, Rahman S (2014) Study of the growth, and effects of filament to substrate distance on the structural and optical properties of Si/SiC core-shell nanowires synthesized by hot-wire chemical vapor deposition. Mater Chem Phys 147:974–981

    Article  CAS  Google Scholar 

  186. Deng J, Sun P, Cheng G et al (2013) Improved field electron emission from SiC assisted carbon nanorod/nanotube heterostructured arrays by using energetic Si ion irradiation. Surf Coat Tech 228:S323–S327

    Article  CAS  Google Scholar 

  187. Ollivier M, Latu-Romain L, Salem B et al (2015) Integration of SiC-1D nanostructures into nano-field effect transistors. Mater Sci Semicon Proc 29:218–222

    Article  CAS  Google Scholar 

  188. Beaber A, Girshick S, Gerberich W (2011) Dislocation plasticity and phase transformations in Si-SiC core-shell nanotowers. Int J Fract 171:177–183

    Article  CAS  Google Scholar 

  189. Taguchi T, Igawa N, Yamamoto H et al (2005) Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes. Phys E 28:431–438

    Article  CAS  Google Scholar 

  190. Pan Y, Zhu P, Wang X et al (2011) Preparation and characterization of one-dimensional SiC-CNT composite nanotubes. Diam Relat Mater 20:310–313

    Article  CAS  Google Scholar 

  191. Hamzan N, Nordin F, Rahman S et al (2015) Effects of substrate temperature on the growth, structural and optical properties of NiSi/SiC core-shell nanowires. Appl Surf Sci 343:70–76

    Article  CAS  Google Scholar 

  192. Hu J, Bando Y, Zhan J et al (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl Phys Lett 85:2932

    Article  CAS  Google Scholar 

  193. Fan S, Chapline M, Franklin N et al (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514

    Article  CAS  Google Scholar 

  194. Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Article  CAS  Google Scholar 

  195. Yang Y, Meng G, Liu X et al (2008) Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer. J Phys Chem C 112:20126–20130

    Article  CAS  Google Scholar 

  196. Liu B, Bando Y, Jiang X et al (2010) Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission. Nanotechnology 21:375601

    Article  CAS  Google Scholar 

  197. Liang Y, Xu H, Hark S (2010) Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J Phys Chem C 114:8343–8347

    Article  CAS  Google Scholar 

  198. Li Z, Zhang M, Meng A (2011) Synthesis and mechanism of single-crystalline β-SiC nanowire arrays on a 6H-SiC substrate. CrystEngComm 13:4097–4101

    Article  CAS  Google Scholar 

  199. Kang M, Lezec H, Sharifi F (2013) Stable field emission from nanoporous silicon carbide. Nanotechnology 24:065201

    Article  Google Scholar 

  200. Chen C, Chen S, Shang M et al (2016) Fabrication of highly oriented 4H-SiC gourd-shaped nanowire arrays and their field emission properties. J Mater Chem C 4:5195–5201

    Article  CAS  Google Scholar 

  201. Lee D (1969) Anisotropic etching of silicon. J Appl Phys 40:4569–4574

    Article  CAS  Google Scholar 

  202. Kelzenberg M, Boettcher S, Petykiewicz J et al (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  CAS  Google Scholar 

  203. Li J, Yu H, Li Y (2012) Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics. Nanotechnology 23:194010

    Article  CAS  Google Scholar 

  204. Liu H, She G, Mu L et al (2012) Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater Res Bull 47:917–920

    Article  CAS  Google Scholar 

  205. Che G, Lakshmi B, Fisher E et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

    Article  CAS  Google Scholar 

  206. Wang H, Li X, Kim T et al (2005) Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl Phys Lett 86:173104-173104-3

    Google Scholar 

  207. Li Z, Zhang J, Meng A et al (2006) Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties. J Phys Chem B 110:22382–22386

    Article  CAS  Google Scholar 

  208. Fang X, Bando Y, Gautam U et al (2008) Inorganic semiconductor nanostructures and their field-emission applications. J Mater Chem 18:509–522

    Article  CAS  Google Scholar 

  209. Mittal G, Lahiri I (2014) Recent progress in nanostructured next-generation field emission devices. J Phys D Appl Phys 47:323001

    Article  CAS  Google Scholar 

  210. Xu N, Huq S (2005) Novel cold cathode materials and applications. Mater Sci Eng R 48:47–189

    Article  CAS  Google Scholar 

  211. Fowler R, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc Lond Ser A 119:173–181

    Article  CAS  Google Scholar 

  212. De Heer W, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  213. Zhu W, Kochanski G, Jin S (1998) Low-field electron emission from undoped nanostructured diamond. Science 282:1471–1473

    Article  CAS  Google Scholar 

  214. Musa I, Munindrasdasa D, Amaratunga G et al (1998) Ultra-low-threshold field emission from conjugated polymers. Nature 395:362–365

    Article  CAS  Google Scholar 

  215. Liu C, Hu Z, Wu Q et al (2005) Vapor-solid growth and characterization of aluminum nitride nanocones. J Am Chem Soc 127:1318–1322

    Article  CAS  Google Scholar 

  216. Fang X, Yan J, Hu L et al (2012) Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv Funct Mater 22:1613–1622

    Article  CAS  Google Scholar 

  217. Bonard J, Weiss N, Kind H et al (2001) Tuning the field emission properties of patterned carbon nanotube films. Adv Mater 13:184–188

    Article  CAS  Google Scholar 

  218. Huang J, Kempa K, Jo S et al (2005) Giant field enhancement at carbon nanotube tips induced by multistage effect. Appl Phys Lett 87:053110-053110-3

    Google Scholar 

  219. Wang X, Zhou J, Lao C et al (2007) In situ field emission of density-controlled ZnO nanowire arrays. Adv Mater 19:1627–1631

    Article  CAS  Google Scholar 

  220. Hwang J, Lee D, Kim J et al (2011) Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J Mater Chem 21:3432–3437

    Article  CAS  Google Scholar 

  221. Kim D, Choi Y, Choi K et al (2008) Stable field emission performance of SiC-nanowire-based cathodes. Nanotechnology 19:225706

    Article  CAS  Google Scholar 

  222. Xu Z, Bai X, Wang E (2006) Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy. Appl Phys Lett 88:133107-133107-3

    Google Scholar 

  223. Teo K, Minoux E, Hudanski L et al (2005) Microwave devices: carbon nanotubes as cold cathodes. Nature 437:968–968

    Article  CAS  Google Scholar 

  224. Tan T, Sim H, Lau S et al (2006) X-ray generation using carbon-nanofiber-based flexible field emitters. Appl Phys Lett 88:103105-103105-3

    Google Scholar 

  225. He J, Yang R, Chueh Y et al (2006) Aligned AlN Nanorods with multi-tipped surfaces-growth, field-emission, and cathodoluminescence properties. Adv Mater 18:650–654

    Article  CAS  Google Scholar 

  226. Song J, Kulinich S, Yan J et al (2013) Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters. Adv Mater 25:5750–5755

    Article  CAS  Google Scholar 

  227. Fang X, Bando Y, Ye C et al (2007) Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem Commun: 3048–3050

    Google Scholar 

  228. Li L, Wu P, Fang X et al (2010) Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors. Adv Mater 22:3161–3165

    Article  CAS  Google Scholar 

  229. Cui H, Gong L, Yang G et al (2011) Enhanced field emission property of a novel Al2O3 nanoparticle-decorated tubular SiC emitter with low turn-on and threshold field. Phys Chem Chem Phys 13:985–990

    Article  CAS  Google Scholar 

  230. Cui H, Sun Y, Yang G et al (2009) Template-and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC. Chem Commun:6243–6245

    Google Scholar 

  231. Zhou J, Gong L, Deng S et al (2005) Growth and field-emission property of tungsten oxide nanotip arrays. Appl Phys Lett 87:223108

    Article  CAS  Google Scholar 

  232. Tang Y, Cong H, Chen Z et al (2005) An array of Eiffel-tower-shape AlN nanotips and its field emission properties. Appl Phys Lett 86:233104-233104-3

    Google Scholar 

  233. Li Y, Bando Y, Golberg D (2004) ZnO nanoneedles with tip surface perturbations: excellent field emitters. Appl Phys Lett 84:3603–3605

    Article  CAS  Google Scholar 

  234. Chattopadhyay S, Chen L, Chen KH (2006) Nanotips: growth, model, and applications. Crit Rev Solid State Mater Sci 31:15–53

    Article  CAS  Google Scholar 

  235. Wu R, Zhou K, Qian X et al (2012) Well-aligned SiC nanoneedle arrays for excellent field emitters. Mater Lett 91:220–223

    Article  CAS  Google Scholar 

  236. Ying P, Chen S, Ren X et al (2015) Investigation of temperature on the field electron emission from flexible N-doped SiC nanoneedles. Superlattice Microst 86:250–255

    Article  CAS  Google Scholar 

  237. Wu Z, Deng S, Xu N et al (2002) Needle-shaped silicon carbide nanowires: synthesis and field electron emission properties. Appl Phys Lett 80:3829–3831

    Article  CAS  Google Scholar 

  238. Fang X, Bando Y, Shen G et al (2007) Ultrafine ZnS nanobelts as field emitters. Adv Mater 19:2593–2596

    Article  CAS  Google Scholar 

  239. Yuan L, Tao Y, Chen J et al (2011) Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Adv Funct Mater 21:2150–2154

    Article  CAS  Google Scholar 

  240. Huang A, Chu P, Wu X (2006) Enhanced electron field emission from oriented columnar AlN and mechanism. Appl Phys Lett 88:251103-251103-3

    Google Scholar 

  241. Deng Y, Xie Y, Zou K et al (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173

    Article  CAS  Google Scholar 

  242. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  243. Gautam U, Panchakarla L, Dierre B et al (2009) Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv Funct Mater 19:131–140

    Article  CAS  Google Scholar 

  244. Zhang H, Tang J, Yuan J et al (2010) Nanostructured LaB6 field emitter with lowest apical work function. Nano Lett 10:3539–3544

    Article  CAS  Google Scholar 

  245. Chen S, Shang M, Gao F et al (2016) Extremely stable current emission of P-doped SiC flexible field emitters. Adv Sci 3:1500256

    Article  CAS  Google Scholar 

  246. Das B, Sarkar D, Maity S et al (2015) Ag decorated topological surface state protected hierarchical Bi2Se3 nanoflakes for enhanced field emission properties. J Mater Chem C 3:1766–1775

    Article  CAS  Google Scholar 

  247. Baby T, Ramaprabhu S (2011) Cold field emission from hydrogen exfoliated graphene composites. Appl Phys Lett 98:183111-183111-3

    Article  CAS  Google Scholar 

  248. Gautier L, Borgne V, Delegan N et al (2015) Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process. Nanotechnology 26:045706

    Article  CAS  Google Scholar 

  249. Liu C, Kim K, Baek J et al (2009) Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles. Carbon 47:1158–1164

    Article  CAS  Google Scholar 

  250. Zhang J, Yang C, Wang Y et al (2006) Improvement of the field emission of carbon nanotubes by hafnium coating and annealing. Nanotechnology 17:257

    Article  CAS  Google Scholar 

  251. Wei W, Jiang K, Wei Y et al (2006) LaB6 tip-modified multiwalled carbon nanotube as high quality field emission electron source. Appl Phys Lett 89:203112–203112

    Article  CAS  Google Scholar 

  252. Sridhar S, Tiwary C, Vinod S et al (2014) Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano 8:7763–7770

    Article  CAS  Google Scholar 

  253. Pandey A, Prasad A, Moscatello J et al (2012) Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds. ACS Nano 7:117–125

    Article  CAS  Google Scholar 

  254. Warule S, Chaudhari N, Shisode R et al (2015) Decoration of CdS nanoparticles on 3D self-assembled ZnO nanorods: a single-step process with enhanced field emission behaviour. CrystEngComm 17:140–148

    Article  CAS  Google Scholar 

  255. Li F, Zhang L, Wu S et al (2015) Au nanoparticles decorated ZnO nanoarrays with enhanced electron field emission and optical absorption properties. Mater Lett 145:209–211

    Article  CAS  Google Scholar 

  256. Zuo Y, Ren Y, Wang Z et al (2013) Enhanced field emission and hysteresis characteristics of aligned carbon nanotubes with Ti decoration. Org Electron 14:2306–2314

    Article  CAS  Google Scholar 

  257. Li H, Green J, Jiao J (2008) Bismuth triiodide sheet-assisted growth and enhanced field emission properties of cadmium sulfide nanowire array attached to a flexible CdS film. J Phys Chem C 112:15140–15143

    Article  CAS  Google Scholar 

  258. Zeng H, Xu X, Bando Y et al (2009) Template deformation-tailored ZnO nanorod/nanowire arrays: full growth control and optimization of field-emission. Adv Funct Mater 19:3165–3172

    Article  CAS  Google Scholar 

  259. Zhao Q, Zhang H, Zhu Y et al (2005) Morphological effects on the field emission of ZnO nanorod arrays. Appl Phys Lett 86:203115-203115-3

    Google Scholar 

  260. Xu J, Hou G, Li H et al (2013) Fabrication of vertically aligned single-crystalline lanthanum hexaboride nanowire arrays and investigation of their field emission. NPG Asia Mater 5:e53

    Article  CAS  Google Scholar 

  261. Niu J, Wang J, Xu N (2008) Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor-solid reaction. Solid State Sci 10:618–621

    Article  CAS  Google Scholar 

  262. Wang Q, Corrigan T, Dai J et al (1997) Field emission from nanotube bundle emitters at low fields. Appl Phys Lett 70:3308–3310

    Article  CAS  Google Scholar 

  263. Liao L, Zhang W, Lu H et al (2007) Investigation of the temperature dependence of the field emission of ZnO nanorods. Nanotechnology 18:225703

    Article  CAS  Google Scholar 

  264. Zhang Q, Xu J, Zhao Y et al (2009) Fabrication of large-scale single-crystalline PrB6 nanorods and their temperature-dependent electron field emission. Adv Funct Mater 19:742–747

    Article  CAS  Google Scholar 

  265. Banerjee D, Jo S, Ren Z (2004) Enhanced field emission of ZnO nanowires. Adv Mater 16:2028–2032

    Article  CAS  Google Scholar 

  266. Nilsson L, Groening O, Emmenegger C et al (2009) Scanning field emission from patterned carbon nanotube films. Appl Phys Lett 76:2071–2073

    Article  Google Scholar 

  267. Yi W, Jeong T, Yu S et al (2002) Field-emission characteristics from wide-bandgap material-coated carbon nanotubes. Adv Mater 14:1464–1468

    Article  CAS  Google Scholar 

  268. Lo H, Das D, Hwang J et al (2003) SiC-capped nanotip arrays for field emission with ultralow turn-on field. Appl Phys Lett 83:1420–1422

    Article  CAS  Google Scholar 

  269. Hou K, Outlaw R, Wang S et al (2008) Uniform and enhanced field emission from chromium oxide coated carbon nanosheets. Appl Phys Lett 92:133112

    Article  CAS  Google Scholar 

  270. Late D, More M, Joag D et al (2006) Field emission studies on well adhered pulsed laser deposited LaB6 on W tip. Appl Phys Lett 89:123510

    Article  CAS  Google Scholar 

  271. Cui H, Gong L, Sun Y et al (2011) Direct synthesis of novel SiC@ Al2O3 core-shell epitaxial nanowires and field emission characteristics. CrystEngComm 13:1416–1421

    Article  CAS  Google Scholar 

  272. Ryu Y, Tak Y, Yong K (2005) Direct growth of core-shell SiC/SiO2 nanowires and field emission characteristics. Nanotechnology 16:S370

    Article  CAS  Google Scholar 

  273. Cao L, Jiang H, Song H et al (2009) SiC/SiO2 core-shell nanowires with different shapes: synthesis and field emission properties. Solid State Commun 150:794–798

    Article  CAS  Google Scholar 

  274. Zhang M, Li Z, Zhao J et al (2014) Facile synthesis of novel one-dimensional hierarchical SiC@SiO2@c-C nanostructures and their field emission properties. RSC Adv 4:55224–55228

    Article  CAS  Google Scholar 

  275. Jeong H, Jeong H, Kim H et al (2013) Self-organized graphene nanosheets with corrugated, ordered tip structures for high-performance flexible field emission. Small 9:2182–2188

    Article  CAS  Google Scholar 

  276. Ghosh P, Yusop M, Satoh S et al (2009) Transparent and flexible field electron emitters based on the conical nanocarbon structures. J Am Chem Soc 132:4034–4035

    Article  CAS  Google Scholar 

  277. Jung Y, Kar S, Talapatra S et al (2009) Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. Nano Lett 6:413–418

    Article  CAS  Google Scholar 

  278. Pradhan D, Kumar M, Ando Y et al (2008) One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties. J Phys Chem C 112:7093–7096

    Article  CAS  Google Scholar 

  279. Yoon B, Hong E, Jee S et al (2005) Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J Am Chem Soc 127:8234–8235

    Article  CAS  Google Scholar 

  280. Liu N, Fang G, Zeng W et al (2012) Enhanced field emission from three-dimensional patterned carbon nanotube arrays grown on flexible carbon cloth. J Mater Chem 22:3478–3484

    Article  CAS  Google Scholar 

  281. Maiti U, Maiti S, Thapa R et al (2009) Flexible cold cathode with ultralow threshold field designed through wet chemical route. Nanotechnology 21:505701

    Article  CAS  Google Scholar 

  282. Hallam T, Cole M, Milne W et al (2014) Field emission characteristics of contact printed graphene fins. Small 10:95–99

    Article  CAS  Google Scholar 

  283. Hsu C, Su C, Hsueh T et al (2014) Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure. RSC Adv 4:3043–3046

    CAS  Google Scholar 

  284. Das S, Saha S, Sen D et al (2009) Highly oriented cupric oxide nanoknife arrays on flexible carbon fabric as high performing cold cathode emitter. J Mater Chem C 2:1321–1330

    Article  CAS  Google Scholar 

  285. Zhang X, Gong L, Liu K et al (2009) Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv Mater 22:5292–5296

    Article  CAS  Google Scholar 

  286. Lyth S, Hatton R, Silva S (2007) Efficient field emission from Li-salt functionalized multiwall carbon nanotubes on flexible substrates. Appl Phys Lett 90:013120-013120-3

    Google Scholar 

  287. Kim K, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  288. Choi W, Shin K, Lee H et al (2011) Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer. Nano Res 4:440–447

    Article  CAS  Google Scholar 

  289. Arif M, Heo K, Lee B et al (2011) Metallic nanowire-graphene hybrid nanostructures for highly flexible field emission devices. Nanotechnology 22:355709

    Article  CAS  Google Scholar 

  290. Nguyen D, Tai N, Chen S et al (2012) Controlled growth of carbon nanotube/graphene hybrid materials for flexible and transparent conductors and electron field emitters. Nanoscale 4:632–638

    Article  CAS  Google Scholar 

  291. Lahiri I, Verma V, Choi W (2011) An all-graphene based transparent and flexible field emission device. Carbon 49:1614–1619

    Article  CAS  Google Scholar 

  292. Lee D, Lee J, Lee W et al (2011) Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films. Small 7:95–100

    Article  CAS  Google Scholar 

  293. Lee D, Kim J, Han T et al (2010) Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv Mater 22:1247–1252

    Article  CAS  Google Scholar 

  294. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  295. Bastakoti B, Oveisi H, Hu C et al (2013) Mesoporous carbon incorporated with In2O3 nanoparticles as high-performance supercapacitors. Eur J Inorg Chem 7:1109–1112

    Article  CAS  Google Scholar 

  296. Wang D, Li F, Liu M et al (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 120:379–382

    Article  Google Scholar 

  297. Salunkhe R, Lee Y, Chang K et al (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem Eur J 20:13838–13852

    Article  CAS  Google Scholar 

  298. Wei T, Chen C, Chien H et al (2010) A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv Mater 22:347–351

    Article  CAS  Google Scholar 

  299. Faraji S, Ani F (2015) The development supercapacitor from activated carbon by electroless plating-a review. Renew Sust Energ Rev 42:823–834

    Article  CAS  Google Scholar 

  300. Mujawar S, Ambade S, Battumur T et al (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56:4462–4466

    Article  CAS  Google Scholar 

  301. Xiang C, Li M, Zhi M et al (2012) Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J Mater Chem 22:19161–19167

    Article  CAS  Google Scholar 

  302. Pang M, Long G, Jiang S et al (2015) One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications. Electrochim Acta 161:297–304

    Article  CAS  Google Scholar 

  303. Wang X, Sumboja A, Lin M et al (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  CAS  Google Scholar 

  304. Huang H, Chang K, Suzuki N et al (2013) Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small 9:2520–2526

    Article  CAS  Google Scholar 

  305. Chen H, Hu L, Chen M et al (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942

    Article  CAS  Google Scholar 

  306. Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318

    Article  CAS  Google Scholar 

  307. Xie K, Qin X, Wang X et al (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352

    Article  CAS  Google Scholar 

  308. Zhang L, Zhang F, Yang X et al (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408

    Article  CAS  Google Scholar 

  309. Alper J, Kim M, Vincent M et al (2013) Silicon carbide nanowires as highly robust electrodes for micro-supercapacitors. J Power Sources 230:298–302

    Article  CAS  Google Scholar 

  310. Alper J, Wang S, Rossi F et al (2014) Selective Ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors. Nano Lett 14:1843–1847

    Article  CAS  Google Scholar 

  311. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884

    Article  CAS  Google Scholar 

  312. Xia X, Zhang Y, Chao D et al (2015) Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ Sci 8:1559–1568

    Article  CAS  Google Scholar 

  313. Xia X, Chao D, Fan Z et al (2014) A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett 14:1651–1658

    Article  CAS  Google Scholar 

  314. Yu M, Wang W, Li C et al (2014) Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater 6:e129

    Article  CAS  Google Scholar 

  315. Yu Z, Tetard L, Zhai L et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  CAS  Google Scholar 

  316. Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  317. Xiang C, Li M, Zhi M et al (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70

    Article  CAS  Google Scholar 

  318. Wu Z, Zhou G, Yin L et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  319. Salunkhe R, Lin J, Malgras V et al (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    Article  CAS  Google Scholar 

  320. Zhao J, Li Z, Zhang M et al (2016) Direct growth of ultrathin NiCo2O4/NiO nanosheets on SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 4:3598–3608

    Article  CAS  Google Scholar 

  321. Li Y, Yu Z, Meng J et al (2013) Enhancing the activity of a SiC-TiO2 composite catalyst for photo-stimulated catalytic water splitting. Int J Hydrogen Energ 38:3898–3904

    Article  CAS  Google Scholar 

  322. Hao J, Wang Y, Tong X et al (2013) SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal Today 212:220–224

    Article  CAS  Google Scholar 

  323. Yang J, Zeng X, Chen L et al (2013) Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl Phys Lett 102:083101

    Article  CAS  Google Scholar 

  324. Wang Y, Guo X, Dong L et al (2013) Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting. Int J Hydrog Energy 38:12733–12738

    Article  CAS  Google Scholar 

  325. Zhou W, Yan L, Wang Y et al (2006) SiC nanowires: a photocatalytic nanomaterial. Appl Phys Lett 2006(89):013105

    Article  CAS  Google Scholar 

  326. Pham-Huu C, Keller N, Ehret G et al (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410

    Article  CAS  Google Scholar 

  327. Ouyang H, Huang J, Zeng X et al (2014) Visible-light photocatalytic activity of SiC hollow spheres prepared by a vapor-solid reaction of carbon spheres and silicon monoxide. Ceram Int 40:2619–2625

    Article  CAS  Google Scholar 

  328. Chen Z, Bing F, Liu Q et al (2012) Novel Z-scheme visible-light-driven Ag3PO4/Ag/SiC photocatalysts with enhanced photocatalytic activity. J Mater Chem A 3:4652–4658

    Article  CAS  Google Scholar 

  329. Kim T, Gomez-Solis C, Moctezuma E et al (2014) Sonochemical synthesis of Fe-TiO2-SiC composite for degradation of rhodamine B under solar simulator. Res Chem Intermed 40:1595–1605

    Article  CAS  Google Scholar 

  330. Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    Article  CAS  Google Scholar 

  331. Jing D, Guo L, Zhao L et al (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energ 35:7087–7097

    Article  CAS  Google Scholar 

  332. van Dorp D, Hijnen N, Di Vece M et al (2009) SiC: a photocathode for water splitting and hydrogen storage. Angew Chem Int Ed 48:6085–6088

    Article  CAS  Google Scholar 

  333. Wang M, Chen J, Liao X et al (2014) Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation. Int J Hydrogen Energ 39:14581–14587

    Article  CAS  Google Scholar 

  334. Zhou X, Li X, Gao Q et al (2015) Metal-free carbon nanotube-SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Cat Sci Technol 5:2798–2806

    Article  CAS  Google Scholar 

  335. Li X, Wen J, Low J et al (2014) Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater 57:70–100

    Article  Google Scholar 

  336. Gondal M, Ali M, Chang X et al (2012) Pulsed laser-induced photocatalytic reduction of greenhouse gas CO2 into methanol: a value-added hydrocarbon product over SiC. J Environ Sci Heal A 47:1571–1576

    Article  CAS  Google Scholar 

  337. Gondal M, Ali M, Dastageer M et al (2013) CO2 conversion into methanol using granular silicon carbide (α6H-SiC): a comparative evaluation of 355-nm laser and xenon mercury broad band radiation sources. Catal Lett 143:108–117

    Article  CAS  Google Scholar 

  338. Zhou W, Fang F, Hou Z et al (2012) Field-effect transistor based on β-SiC nanowire. IEEE Electr Device L 27:463–465

    Article  CAS  Google Scholar 

  339. Seong H, Choi H, Lee S et al (2004) Optical and electrical transport properties in silicon carbide nanowires. Appl Phys Lett 85:1256–1258

    Article  CAS  Google Scholar 

  340. Rogdakis K, Lee S, Bescond M et al (2008) 3C-silicon carbide nanowire FET: an experimental and theoretical approach. IEEE T Electron Dev 55:1970–1976

    Article  CAS  Google Scholar 

  341. Choi J, Bano E, Latu-Romain L et al (2015) Improved ohmic contacts for SiC nanowire devices with nickel-silicide. J Alloys Compd 650:853–857

    Article  CAS  Google Scholar 

  342. Rogdakis K, Bano E, Montes L et al (2011) Rectifying source and drain contacts for effective carrier transport modulation of extremely doped SiC nanowire FETs. IEEE T Nanotechnol 10:980–984

    Article  Google Scholar 

  343. Zhou W, Liu X, Zhang Y (2006) Simple approach to β-SiC nanowires: synthesis, optical, and electrical properties. Appl Phys Lett 89: 223124–223124-3

    Article  CAS  Google Scholar 

  344. Rogdakis K, Poli S, Bano E et al (2009) Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs. Nanotechnology 20:295202

    Article  CAS  Google Scholar 

  345. Konstantinos R, Marc B, Edwige B et al (2007) Theoretical comparison of 3C-SiC and Si nanowire FETs in ballistic and diffusive regimes. Nanotechnology 18:475715

    Article  CAS  Google Scholar 

  346. Liu E, Jain N, Varahramyan K et al (2010) Role of metal-semiconductor contact in nanowire field-effect transistors. IEEE T Nanotechnol 9:237–242

    Article  Google Scholar 

  347. Tang W, Dayeh S, Picraux S et al (2012) Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett 12:3979–3985

    Article  CAS  Google Scholar 

  348. Lin Y, Lu K, Wu W et al (2008) Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett 8:913–918

    Article  CAS  Google Scholar 

  349. Eriksson J, Roccaforte F, Giannazzo F et al (2009) Improved Ni/3C-SiC contacts by effective contact area and conductivity increases at the nanoscale. Appl Phys Lett 94:112104

    Article  CAS  Google Scholar 

  350. Jang C, Kim T, Lee S et al (2008) Low-resistance ohmic contacts to SiC nanowires and their applications to field-effect transistors. Nanotechnology 19:345203

    Article  CAS  Google Scholar 

  351. Eaton W, Smith J (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6:530–539

    Article  CAS  Google Scholar 

  352. Guckel H (1991) Surface micromachined pressure transducers. Sensor Actuat A Phys 28:133–146

    Article  CAS  Google Scholar 

  353. Dao D, Nakamura K, Bui T et al (2010) Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1:013001

    Article  CAS  Google Scholar 

  354. Spearing S (2000) Materials issues in microellctromechanical systens (MEMS). Acta Mater 48:179–196

    Article  CAS  Google Scholar 

  355. Willander M, Friesel M, Wahab Q et al (2006) Silicon carbide and diamond for high temperature device applications. J Mater Sci Mater Electron 17:1–25

    Article  CAS  Google Scholar 

  356. Kroetz G, Eickhoff M, Moeller H (1999) Silicon compatible materials for harsh environment sensors. Sens Actuators A Phys 74:182–189

    Article  CAS  Google Scholar 

  357. Fahrner W, Job R, Werner M (2001) Sensors and smart electronics in harsh environment applications. Microsyst Technol 7:138–144

    Article  Google Scholar 

  358. Werner M (1999) High-temperature sensors based on SiC and diamond technology. Sensors Update 5:141–190

    Article  CAS  Google Scholar 

  359. Werner M, Fahrner R (2001) Review on materials, microsensors, systems, and devices for high-temperature and harsh-environment applications. IEEE Trans Ind Electron 48:249–257

    Article  Google Scholar 

  360. Shor J, Goldstein D, Kurtz A (1993) Characterization of n-Type β-Sic as a piezoresistor. IEEE T Electron Dev 40:1093

    Article  CAS  Google Scholar 

  361. Toriyama T, Sugiyama S (2002) Analysis of piezoresistance in n-type β-SiC for high-temperature mechanical sensors. Appl Phys Lett 81:2797

    Article  CAS  Google Scholar 

  362. Phan H, Dao D, Nakamura K et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24:1663–1677

    Article  CAS  Google Scholar 

  363. Alvin Barlian A, Park W, Mallon J et al (2009) Review:semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552

    Article  CAS  Google Scholar 

  364. Wu R, Zhou K, Yue C et al (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 72:1–60

    Article  CAS  Google Scholar 

  365. Lugstein A, Steinmair M, Steiger A et al (2010) Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett 10:3204–3208

    Article  CAS  Google Scholar 

  366. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46

    Article  CAS  Google Scholar 

  367. Nakamura K, Toriyama T, Sugiyama S (2011) First-principles simulation on piezoresistivity in alpha and beta silicon carbide nanosheets. Jpn J Appl Phys 50:06GE05

    Article  Google Scholar 

  368. Rolnick H (1930) Tension coefficient of resistance of metals. Phys Rev 36:506–512

    Article  CAS  Google Scholar 

  369. Smith C (1954) Piezoresistance effect in germanium and silicon. Phys Rev 94:42–49

    Article  CAS  Google Scholar 

  370. Herring C (1955) Transport properties of a many-valley semiconductor. Bell Syst Tech J 34:237–290

    Article  Google Scholar 

  371. Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101:944–961

    Article  CAS  Google Scholar 

  372. Long D (1961) Stress dependence of the piezoresistance effect. J Appl Phys 32:2050

    Article  Google Scholar 

  373. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80

    Article  CAS  Google Scholar 

  374. Shao R, Zheng K, Zhang Y et al (2012) Piezoresistance behaviors of ultra-strained SiC nanowires. Appl Phys Lett 101:233109

    Article  CAS  Google Scholar 

  375. Zeng H, Li T, Bartenwerfer M et al (2013) In situ SEM electromechanical characterization of nanowire using an electrostatic tensile device. J Phys D Appl Phys 46:305501

    Article  CAS  Google Scholar 

  376. Gao F, Zheng J, Wang M et al (2012) Piezoresistance behaviors of p-type 6H-SiC nanowires. Chem Commun 47:11993–11995

    Article  CAS  Google Scholar 

  377. Bi J, Wei G, Wang L et al (2013) Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires. J Mater Chem C 1:4514–4517

    Article  CAS  Google Scholar 

  378. Bi J, Wei G, Shang M et al (2014) Piezoresistance in Si3N4 nanobelts: toward highly sensitive and reliable pressure sensors. J Mater Chem C 2:10062–10066

    Article  CAS  Google Scholar 

  379. Milne J, Rowe A, Arscott S et al (2010) Giant piezoresistance effects in silicon nanowires and microwires. Phys Rev Lett 105:226802

    Article  CAS  Google Scholar 

  380. Phan H, Viet Dao D, Tanner P et al (2014) Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl Phys Lett 104:111905

    Article  CAS  Google Scholar 

  381. Phan H, Dao D, Tanner P et al (2014) Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films. J Mater Chem C 2:7176–7179

    Article  CAS  Google Scholar 

  382. Alivisators A (1996) Semiconductor clusters, nanocrystala, and quantum Dots. Science 271:933–937

    Article  Google Scholar 

  383. Wu W, Wang Z (2016) Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat Rev Mater 1:16031

    Article  CAS  Google Scholar 

  384. Li H, He Z, Chu Y et al (2013) Large-scale synthesis, growth mechanism, and photoluminescence of 3C-SiC nanobelts. Mater Lett 109:275–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyou Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S., Li, W., Li, X., Yang, W. (2019). Silicon Carbide Nanowires and Electronics. In: Shen, G., Chueh, YL. (eds) Nanowire Electronics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2367-6_8

Download citation

Publish with us

Policies and ethics