Skip to main content

The Culture Technology for Freshwater and Marine Microalgae

  • Chapter
  • First Online:
Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment

Abstract

Microalgae are promising eco-friendly source of food, feed, biofuels, and chemicals. There has been substantial progress at the lab and industrial scales to develop efficient and sustainable microalgae culturing techniques. However, several constraints must be addressed to make the overall process economically viable. Chemo-genetics elements can play a pivotal role in achieving the commercial goals because microalgae grow more efficiently in high concentrations of essential nutrients like nitrogen, phosphorus, and carbon in addition to enhance by-product formation. Moreover, alteration in culturing conditions also activates lipid accumulation. Recent strategies have combined these approaches to enhance lipid accumulation and along with enhanced biomass productivity. It is necessary to optimize inoculum production and culture management to avoid contamination, especially at commercial scales. Furthermore, prevailing outdoor conditions of rainfall, variable temperature, and irradiation, which are entirely different from small lab-scale facilities, pose additional challenges during outdoor cultivation. This chapter highlights the nutritional requirements of culturing media and their impact along with possible challenges on microalgae cultivation to ensure the stable and high productivities of large-scale cultures. Media recycling not only reduces the dependency on freshwater but also increases the economic viability of the process. Recent advances regarding media recycling and strategies to control biological contaminants are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Shahid A, Ibrahim M, Liu T, Nawaz M, Mehmood MA. Microalgae: a promising feedstock for energy and high-value products. In: Algae based polymers, blends, and composites. San Diego: Elsevier; 2017. p. 55.

    Chapter  Google Scholar 

  • Alam MA, Vandamme D, Chun W, Zhao X, Foubert I, Wang Z, Muylaert K, Yuan Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol. 2016;15(4):573–83.

    Article  Google Scholar 

  • Alam MA, Wan C, Zhao X-Q, Chen L-J, Chang J-S, Bai F-W. Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. J Hazard Mater. 2015;289:38–45.

    Google Scholar 

  • Alam MA, Wang Z, Yuan Z. Generation and harvesting of microalgae biomass for biofuel production. In: Prospects and challenges in algal biotechnology. Singapore: Springer; 2017. p. 89–111.

    Chapter  Google Scholar 

  • Arumugam M, Agarwal A, Arya MC, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour Technol. 2013;131:246–9.

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Prasad R, Ibrahim AI, Ahmed AI. Promising applications for the production of biofuels through algae. In: Microbial biotechnology. Singapore: Springer; 2017. p. 81–103.

    Chapter  Google Scholar 

  • Barra L, Chandrasekaran R, Corato F, Brunet C. The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Mar Drugs. 2014;12(3):1641–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartley ML, Boeing WJ, Daniel D, Dungan BN, Schaub T. Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. J Appl Phycol. 2016;28(1):15–24.

    Article  CAS  Google Scholar 

  • Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A. Algal bioethanol production technology: a trend towards sustainable development. Renew Sustain Energ Rev. 2017;71:976–85.

    Article  CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–response surface methodology analysis. Energy Convers Manag. 2009;50(2):262–7.

    Article  CAS  Google Scholar 

  • Bohutskyi P, Kligerman DC, Byers N, Nasr LK, Cua C, Chow S, Su C, Tang Y, Betenbaugh MJ, Bouwer EJ. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Res. 2016;19:278–90.

    Article  Google Scholar 

  • Borowitzka M. Biotechnological & environmental applications of microalgae. Biotechnological & environmental applications of microalgae[Online] Murdoch University. 2006.

    Google Scholar 

  • Bueno M, MarcÃlio T, Morocho AL, Valà M. Cosmetic attributes of algae – a review. Algal Res. 2017;25:483–7.

    Article  Google Scholar 

  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energ Rev. 2013;19:360–9.

    Article  CAS  Google Scholar 

  • Carney LT, Lane TW. Parasites in algae mass culture. Front Microbiol. 2014;5:278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra R, Parra R, MN Iqbal H. Phycobiliproteins: a novel green tool from marine origin blue-green algae and red algae. Protein Pept Lett. 2017;24(2):118–25.

    Article  CAS  PubMed  Google Scholar 

  • Chandra TS, Deepak R, Kumar MM, Mukherji S, Chauhan V, Sarada R, Mudliar S. Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresour Technol. 2016;207:430–9.

    Article  CAS  Google Scholar 

  • Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products– a review. Bioresour Technol. 2017;244:1198–206.

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhao L, Qi Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy. 2015;137:282–91.

    Article  Google Scholar 

  • Chisti Y. Microalgae as sustainable cell factories. Environ Eng Manag J. 2006;5(3):261–74.

    Article  CAS  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh Y-K, Lee T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol. 2011;102(18):8639–45.

    Article  CAS  PubMed  Google Scholar 

  • Chu F-F, Chu P-N, Cai P-J, Li W-W, Lam PK, Zeng RJ. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol. 2013;134:341–6.

    Article  CAS  PubMed  Google Scholar 

  • Chu F-F, Chu P-N, Shen X-F, Lam PK, Zeng RJ. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol. 2014;152:241–6.

    Article  CAS  PubMed  Google Scholar 

  • Crofcheck C, Crocker M. Application of recycled media and algae-based anaerobic digestate in Scenedesmus cultivation. J Renew Sustain Energy. 2016;8(1):1.

    Google Scholar 

  • Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R. Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod. 2015;98:53–65.

    Article  CAS  Google Scholar 

  • da Costa F, Le Grand F, Quere C, Bougaran G, Cadoret JP, Robert R, Soudant P. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea. Algal Res. 2017;27:177–89.

    Article  Google Scholar 

  • Daneshvar E, Santhosh C, Antikainen E, Bhatnagar A. Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. J Environ Chem Eng. 2018;6(2):1848–54.

    Article  CAS  Google Scholar 

  • Day JG, Gong Y, Hu Q. Microzooplanktonic grazers–A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res. 2017;27:356–65.

    Article  Google Scholar 

  • Day JG, Slocombe SP, Stanley MS. Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol. 2012;109:245–51.

    Article  CAS  PubMed  Google Scholar 

  • Dayananda C, Sarada R, Rani MU, Shamala T, Ravishankar G. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy. 2007;31(1):87–93.

    Article  CAS  Google Scholar 

  • Deng X-Y, Gao K, Addy M, Li D, Zhang R-C, Lu Q, Ma Y-W, Cheng Y-L, Chen P, Liu Y-H. Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Bioresour Technol. 2018;247:716–23.

    Article  CAS  PubMed  Google Scholar 

  • Depraetere O, Pierre G, Noppe W, Vandamme D, Foubert I, Michaud P, Muylaert K. Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Res. 2015;10:48–54.

    Article  Google Scholar 

  • Discart V, Bilad M, Marbelia L, Vankelecom I. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol. 2014;152:321–8.

    Article  CAS  PubMed  Google Scholar 

  • Dixon C, Wilken LR. Green microalgae biomolecule separations and recovery. Bioresour Bioprocess. 2018;5(1):14.

    Article  Google Scholar 

  • El Gamal AA. Biological importance of marine algae. Saudi Pharm J. 2010;18(1):1–25.

    Article  PubMed  CAS  Google Scholar 

  • Elrayies GM. Microalgae: prospects for greener future buildings. Renew Sustain Energ Rev. 2018;81:1175–91.

    Article  CAS  Google Scholar 

  • Elser JJ. Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol. 2012;23(6):833–8.

    Article  CAS  PubMed  Google Scholar 

  • Farooq W, Moon M, B-g R, Suh WI, Shrivastav A, Park MS, Mishra SK, Yang J-W. Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res. 2015a;8:1–7.

    Article  Google Scholar 

  • Farooq W, Suh WI, Park MS, Yang J-W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresour Technol. 2015b;184:73–81.

    Article  CAS  PubMed  Google Scholar 

  • Feng P-Z, Zhu L-D, Qin X-X, Li Z-H. Water footprint of biodiesel production from microalgae cultivated in photobioreactors. J Environ Eng. 2016;142(12):04016067.

    Article  CAS  Google Scholar 

  • Fret J, Roef L, Blust R, Diels L, Tavernier S, Vyverman W, Michiels M. Reuse of rejuvenated media during laboratory and pilot scale cultivation of Nannochloropsis sp. Algal Res. 2017;27:265–73.

    Article  Google Scholar 

  • Fret J, Roef L, Diels L, Tavernier S, Vyverman W, Michiels M. Implementation of flocculation and sand filtration in medium recirculation in a closed microalgae production system. Algal Res. 2016;13:116–25.

    Article  Google Scholar 

  • Fu L, Cui X, Li Y, Xu L, Zhang C, Xiong R, Zhou D, Crittenden JC. Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chem Eng J. 2017;330:566–72.

    Article  CAS  Google Scholar 

  • Gan K, Mou X, Xu Y, Wang H. Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa. Bioresour Technol. 2014;171:285–90.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar JGF. Optimization of the composition and recycling strategy of the culture medium for industrial production of microalgae. Lisboa: Instituto Superior Técnico, Universidade de Lisboa; 2014.

    Google Scholar 

  • Genin SN, Aitchison JS, Allen DG. Photobioreactor-based energy sources. In: Nano and biotech based materials for energy building efficiency. Cham: Springer; 2016. p. 429–55.

    Chapter  Google Scholar 

  • Gill SS, Mehmood MA, Ahmad N, Ibrahim M, Rashid U, Ali S, Nehdi IA. Strain selection, growth productivity and biomass characterization of novel microalgae isolated from fresh and wastewaters of upper Punjab. Pak Front Life Sci. 2016;9(3):190–200.

    Article  CAS  Google Scholar 

  • Gill SS, Mehmood MA, Rashid U, Ibrahim M, Saqib A, Tabassum MR. Waste-water treatment coupled with biodiesel production using microalgae: a bio-refinery approach. Pak J Life Soc Sci. 2013;11(3):179–89.

    Google Scholar 

  • González-López C, Cerón-García M, Fernández-Sevilla J, González-Céspedes A, Camacho-Rodríguez J, Molina-Grima E. Medium recycling for Nannochloropsis gaditana cultures for aquaculture. Bioresour Technol. 2013;129:430–8.

    Article  PubMed  CAS  Google Scholar 

  • Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K. Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface. 2009;7(46):703–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths MJ, Harrison ST. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21(5):493–507.

    Article  CAS  Google Scholar 

  • Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag. 2017;203:299–315.

    Article  CAS  Google Scholar 

  • Hadj-Romdhane F, Jaouen P, Pruvost J, Grizeau D, Van Vooren G, Bourseau P. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresour Technol. 2012;123:366–74.

    Article  CAS  PubMed  Google Scholar 

  • Hesse M, Santos B, Selesu N, Corrêa D, Mariano A, Vargas J, Vieira R. Optimization of flocculation with tannin-based flocculant in the water reuse and lipidic production for the cultivation of Acutodesmus obliquus. Sep Sci Technol. 2017;52(5):936–42.

    Article  CAS  Google Scholar 

  • Ho S-H, Chen C-Y, Chang J-S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2012;113:244–52.

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S. Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv. 2011;29(2):189–98.

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Chiu S-Y, Kao C-Y, Chen T-Y, Chang Y-B, Chang J-S, Lin C-S. Ferrofluid-assisted rapid and directional harvesting of marine microalgal Chlorella sp. used for biodiesel production. Bioresour Technol. 2017;244:1337–40.

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol. 2013;135:157–65.

    Article  CAS  PubMed  Google Scholar 

  • Igou T, Van Ginkel SW, Penalver-Argueso P, Fu H, Narode A, Cheruvu S, Zhang Q, Hassan F, Woodruff F, Chen Y. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production. Water Environ Res. 2014;86(12):2325–9.

    Article  CAS  PubMed  Google Scholar 

  • Ji M-K, Yun H-S, Park S, Lee H, Park Y-T, Bae S, Ham J, Choi J. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Bioresour Technol. 2015;179:624–8.

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102(1):186–93.

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Mujtaba G, Lee K. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae. 2016;31(3):257–66.

    Article  CAS  Google Scholar 

  • Kim G, Mujtaba G, Rizwan M, Lee K. Environmental stress strategies for stimulating lipid production from microalgae for biodiesel. Appl Chem Eng. 2014a;25(25):553–8.

    Article  CAS  Google Scholar 

  • Kim J, Ryu B-G, Lee Y-J, Han J-I, Kim W, Yang J-W. Continuous harvest of marine microalgae using electrolysis: effect of pulse waveform of polarity exchange. Bioprocess Biosyst Eng. 2014b;37(7):1249–59.

    Article  CAS  PubMed  Google Scholar 

  • Komolafe O, Orta SBV, Monje-Ramirez I, Noguez IY, Harvey AP, Ledesma MTO. Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol. 2014;154:297–304.

    Article  CAS  PubMed  Google Scholar 

  • Kong Q-x, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 2010;160(1):9.

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Singh B, Sharma YC. Challenges and opportunities in commercialization of algal biofuels. In: Algal biofuels. Springer Switzerland; 2017. p. 421–50.

    Google Scholar 

  • Kunjapur AM, Eldridge RB. Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res. 2010;49(8):3516–26.

    Article  CAS  Google Scholar 

  • Lam TP, Lee T-M, Chen C-Y, Chang J-S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour Technol. 2017;252:180–7.

    Article  PubMed  CAS  Google Scholar 

  • Lammers PJ, Huesemann M, Boeing W, Anderson DB, Arnold RG, Bai X, Bhole M, Brhanavan Y, Brown L, Brown J. Review of the cultivation program within the national alliance for advanced biofuels and bioproducts. Algal Res. 2017;22:166–86.

    Article  Google Scholar 

  • Liang K, Zhang Q, Gu M, Cong W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol. 2013;25(1):311–8.

    Article  CAS  Google Scholar 

  • Lin T-S, Wu J-Y. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol. 2015;184:100–7.

    Article  CAS  PubMed  Google Scholar 

  • Loftus SE, Johnson ZI. Cross-study analysis of factors affecting algae cultivation in recycled medium for biofuel production. Algal Res. 2017;24:154–66.

    Article  Google Scholar 

  • Lowrey J, Armenta RE, Brooks MS. Nutrient and media recycling in heterotrophic microalgae cultures. Appl Microbiol Biotechnol. 2016;100(3):1061–75.

    Article  CAS  PubMed  Google Scholar 

  • Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T. Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol. 2018;50:111–20.

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Vandamme D, Muylaert K. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour Technol. 2014;166:259–65.

    Article  CAS  PubMed  Google Scholar 

  • Massa M, Buono S, Langellotti AL, Castaldo L, Martello A, Paduano A, Sacchi R, Fogliano V. Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. New Biotechnol. 2017;36:8–16.

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–32.

    Article  CAS  Google Scholar 

  • McBride RC, Lopez S, Meenach C, Burnett M, Lee PA, Nohilly F, Behnke C. Contamination management in low cost open algae ponds for biofuels production. Ind Biotechnol. 2014;10(3):221–7.

    Article  Google Scholar 

  • Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability. Water Res. 2015;83:42–51.

    Article  CAS  PubMed  Google Scholar 

  • Meyer N, Bigalke A, Kaulfuß A, Pohnert G. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev. 2017;41(6):880–99.

    Article  CAS  PubMed  Google Scholar 

  • Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol. 2011;10(1):31–41.

    Article  Google Scholar 

  • Mooij PR, Stouten GR, van Loosdrecht MC, Kleerebezem R. Ecology-based selective environments as solution to contamination in microalgal cultivation. Curr Opin Biotechnol. 2015;33:46–51.

    Article  CAS  PubMed  Google Scholar 

  • Murphy CF, Allen DT. Energy-water nexus for mass cultivation of algae. Environ Sci Technol. 2011;45(13):5861–8.

    Article  CAS  PubMed  Google Scholar 

  • Muthuraj M, Kumar V, Palabhanvi B, Das D. Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. J Ind Microbiol Biotechnol. 2014;41(3):499–511.

    Article  CAS  PubMed  Google Scholar 

  • Olguín EJ. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv. 2012;30(5):1031–46.

    Article  PubMed  CAS  Google Scholar 

  • Park S, Kim J, Yoon Y, Park Y, Lee T. Blending water-and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014. Bioresour Technol. 2015;198:388–94.

    Article  CAS  PubMed  Google Scholar 

  • PÅ‚aczek M, Patyna A, Witczak S. Technical evaluation of photobioreactors for microalgae cultivation. In: E3S web of conferences, EDP Sciences, p. 02032; 2017.

    Article  CAS  Google Scholar 

  • Podder M, Majumder C. Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecol Sin. 2016;36(4):256–68.

    Article  Google Scholar 

  • Qin L, Shu Q, Wang Z, Shang C, Zhu S, Xu J, Li R, Zhu L, Yuan Z. Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol. 2014;172(2):1121–30.

    Article  CAS  PubMed  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol. 2008;34(2):77–88.

    Article  CAS  PubMed  Google Scholar 

  • Ramaraj R, Tsai DD-W, Chen PH. Carbon dioxide fixation of freshwater microalgae growth on natural water medium. Ecol Eng. 2015;75:86–92.

    Article  Google Scholar 

  • Ramsundar P, Guldhe A, Singh P, Bux F. Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour Technol. 2017;227:82–92.

    Article  CAS  PubMed  Google Scholar 

  • Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. New York: Wiley; 2008.

    Google Scholar 

  • Rocha G, Pinto F, Melão M, Lombardi A. Growing Scenedesmus quadricauda in used culture media: is it viable? J Appl Phycol. 2015;27(1):171–8.

    Article  Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati G, Tredici MR. Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomol Eng. 2003;20(4–6):243–8.

    Article  CAS  PubMed  Google Scholar 

  • Ruangsomboon S. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour Technol. 2015;191:377–84.

    Article  CAS  PubMed  Google Scholar 

  • Ruangsomboon S, Prachom N, Sornchai P. Enhanced growth and hydrocarbon production of Botryococcus braunii KMITL 2 by optimum carbon dioxide concentration and concentration-dependent effects on its biochemical composition and biodiesel properties. Bioresour Technol. 2017;244:1358–66.

    Article  CAS  PubMed  Google Scholar 

  • Russel M, Liu C, Alam A, Wang F, Yao J, Daroch M, Shah MR, Wang Z. Exploring an in situ LED-illuminated isothermal micro-calorimetric method to investigating the thermodynamic behavior of Chlorella vulgaris during CO2 bio-fixation. Environ Sci Pollut Res. 2018:1–9.

    Google Scholar 

  • Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S. Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol. 2015;99(24):10597–609.

    Article  CAS  PubMed  Google Scholar 

  • Sahu AK, Siljudalen J, Trydal T, Rusten B. Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. J Environ Manag. 2013;122:113–20.

    Article  CAS  Google Scholar 

  • Schmidt JJ, Gagnon GA, Jamieson RC. Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecol Eng. 2016;95:588–93.

    Article  Google Scholar 

  • Sforza E, Calvaruso C, La Rocca N, Bertucco A. Luxury uptake of phosphorus in Nannochloropsis salina: Effect of P concentration and light on P uptake in batch and continuous cultures. Biochem Eng J. 2018;134:69–79.

    Article  CAS  Google Scholar 

  • Shahid A, Khan AZ, Liu T, Malik S, Afzal I, Mehmood MA. Production and processing of algal biomass. In: Algae based polymers, blends, and composites. San Diego: Elsevier; 2017. p. 273–99.

    Chapter  Google Scholar 

  • Shang C, Wang W, Zhu S, Wang Z, Qin L, Alam MA, Xie J, Yuan Z. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. Algal Res. 2018;32:1–10.

    Article  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies. 2012;5(5):1532–53.

    Article  CAS  Google Scholar 

  • Shen X-F, Liu J-J, Chauhan AS, Hu H, Ma L-L, Lam PK, Zeng RJ. Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate. Algal Res. 2016;17:261–7.

    Article  Google Scholar 

  • Shen X-F, Liu J-J, Chu F-F, Lam PK, Zeng RJ. Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation. Appl Energy. 2015;158:348–54.

    Article  CAS  Google Scholar 

  • Sing SF, Isdepsky A, Borowitzka M, Lewis D. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol. 2014;161:47–54.

    Article  CAS  Google Scholar 

  • Sirakov I, Velichkova K, Stoyanova S, Staykov Y. The importance of microalgae for aquaculture industry. Int J Fish Aquat Stud. 2015;2(4):81–4.

    Google Scholar 

  • Smith VH, Crews T. Applying ecological principles of crop cultivation in large-scale algal biomass production. Algal Res. 2014;4:23–34.

    Article  Google Scholar 

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv. 2016;34(5):550–64.

    Article  CAS  PubMed  Google Scholar 

  • Spence WH. Regrowth of Chlorella sorokiniana on recycled media with with replenished nutrients. 2016

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  • Su C-H, Chien L-J, Gomes J, Lin Y-S, Yu Y-K, Liou J-S, Syu R-J. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol. 2011;23(5):903–8.

    Article  CAS  Google Scholar 

  • Suganya T, Varman M, Masjuki H, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energ Rev. 2016;55:909–41.

    Article  CAS  Google Scholar 

  • Suleria HAR, Osborne S, Masci P, Gobe G. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar Drugs. 2015;13(10):6336–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol. 2014;155:204–12.

    Article  CAS  PubMed  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010;101(15):5892–6.

    Article  CAS  PubMed  Google Scholar 

  • Umar A, Caldwell GS, Lee JG. Foam flotation can remove and eradicate ciliates contaminating algae culture systems. Algal Res. 2018;29:337–42.

    Article  Google Scholar 

  • Varshney P, Beardall J, Bhattacharya S, Wangikar PP. Isolation and biochemical characterisation of two thermophilic green algal species-Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Res. 2018;30:28–37.

    Article  Google Scholar 

  • Wang H, Zhang W, Chen L, Wang J, Liu T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol. 2013;128:745–50.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yuan D, Li Y, Ma M, Hu Q, Gong Y. Contaminating microzooplankton in outdoor microalgal mass culture systems: An ecological viewpoint. Algal Res. 2016;20:258–66.

    Article  Google Scholar 

  • Wang Y, Gong Y, Dai L, Sommerfeld M, Zhang C, Hu Q. Identification of harmful protozoa in outdoor cultivation of Chlorella and the use of ultrasonication to control contamination. Algal Res. 2018;31:298–310.

    Article  Google Scholar 

  • Wijffels RH. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol. 2008;26(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  • Wolkers H, Barbosa M, Kleinegris DM, Bosma R, Wijffels RH. Microalgae: the green gold of the future. Wageningen: Propress; 2011.

    Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101(14):5494–500.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y. Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol. 2011;102(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  • Yap BH, Crawford SA, Dagastine RR, Scales PJ, Martin GJ. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. J Ind Microbiol Biotechnol. 2016;43(12):1671–80.

    Article  CAS  PubMed  Google Scholar 

  • Yen H-W, Hu I-C, Chen C-Y, Chang J-S. Design of photobioreactors for algal cultivation. In: Biofuels from algae. San Diego: Elsevier; 2014. p. 23–45.

    Chapter  Google Scholar 

  • Zhang X, Lu Z, Wang Y, Wensel P, Sommerfeld M, Hu Q. Recycling Nannochloropsis oceanica culture media and growth inhibitors characterization. Algal Res. 2016;20:282–90.

    Article  Google Scholar 

  • Zhao B, Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energ Rev. 2014;31:121–32.

    Article  CAS  Google Scholar 

  • Zheng N, Ding N, Gao P, Han M, Liu X, Wang J, Sun L, Fu B, Wang R, Zhou J. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater. Sci Total Environ. 2018;631:1415–20.

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y. Environment-enhancing algal biofuel production using wastewaters. Renew Sustain Energ Rev. 2014;36:256–69.

    Article  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy. 2012;98:433–40.

    Article  CAS  Google Scholar 

  • Zhu L, Takala J, Hiltunen E, Wang Z. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresour Technol. 2013;144:14–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aamer Mehmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, A., Malik, S., Alam, M.A., Nahid, N., Mehmood, M.A. (2019). The Culture Technology for Freshwater and Marine Microalgae. In: Alam, M., Wang, Z. (eds) Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-13-2264-8_2

Download citation

Publish with us

Policies and ethics