Skip to main content

Production of Green Composites from Various Sustainable Raw Materials

  • Chapter
  • First Online:
Green Composites

Abstract

The developing anxiety towards prevention of ecological destruction and the unfilled requirement for more adaptable environmental friendly materials has prompted expanding interest about polymer composites, originating from sustainable sources and biodegradable plant materials, particularly from forests. The composites for the most part are referred to as ‘green’ and can be used in industrial applications. Green composites do not harm the environment much and could be satisfactory alternatives to petroleum-based polymers and polymer composites. Using renewable resources like vegetable oils, carbohydrates and proteins, to develop biopolymer matrices like in cellulose-reinforced green composites, it is possible to minimize the consumption of fossil oil resources. Vegetable oils are not costly, easily sourced and could be used to synthesize sustainable polymers. These have widened the utilization of plant fibres as reinforcements and have increased the possibility for sustainable and ‘biodegradable’ composites, which can be called ‘green’ composites as they satisfy the criteria of ‘green materials’. Thus, the challenge to obtain ‘green’ composite involves obtaining ‘green’ polymers functioning as matrices in the production of composite materials. This chapter considers the materials and methods utilized for the fabrication and particularly the utilization of green composites in different technological fields. Furthermore, a discussion on the sustainability of major raw materials utilized in green composites is provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AL-Oqla FM, Omari MA (2017). Sustainable biocomposites: challenges, potential and barriers for development. In: Green biocomposites, pp 13–29

    Google Scholar 

  • Ammayappan L, Das S, Guruprasad R, Ray DP, Ganguly PK (2016) Effect of lac treatment on mechanical properties of jute fabric/polyester resin based biocomposite

    Google Scholar 

  • Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C Polym Rev 44:231–274

    Article  CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33:939–948

    Article  Google Scholar 

  • Basak S, Samanta KK, Chattopadhyay SK, Pandit P, Maiti S (2016) Green fire retardant finishing and combined dyeing of proteinous wool fabric. Color Technol 132:135–143

    Article  CAS  Google Scholar 

  • Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  • Chand N, Hashmi SAR (1993) Mechanical properties of sisal fibre at elevated temperatures. J Mater Sci 28:6724–6728

    Article  CAS  Google Scholar 

  • Das S (2017) Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites. Carbohydr Polym 172:60–67

    Article  CAS  PubMed  Google Scholar 

  • Das S, Bhowmick M (2015) Mechanical properties of unidirectional jute-polyester composite. J Text Sci Eng 5:1

    Google Scholar 

  • Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym Sci 107:522–527

    Article  CAS  Google Scholar 

  • Das S, Bhowmick M, Chattopadhyay SK, Basak S (2015) Application of biomimicry in textiles. Curr Sci 109:893–901

    Article  Google Scholar 

  • Debnath S, Nguong CW, Lee SNB (2013) A review on natural fibre reinforced polymer composites. World Acad Sci Eng Technol 1123–1130

    Google Scholar 

  • Doerffer JW (2013) Oil spill response in the marine environment. Elsevier

    Google Scholar 

  • Drzal LT, Madhukar M (1993) Fibre-matrix adhesion and its relationship to composite mechanical properties. J Mater Sci 28:569–610

    Article  CAS  Google Scholar 

  • Eggli U, Hartmann HEK (2002) Illustrated handbook of succulent plants: dicotyledons. Springer Science & Business Media

    Google Scholar 

  • Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60:2857–2863

    Article  CAS  Google Scholar 

  • Grishchuk S, Karger-Kocsis J (2011) Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polym, Lett, p 5

    Google Scholar 

  • Hill CAS, Khalil HPSA, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8:53–63

    Article  CAS  Google Scholar 

  • Huda S, Reddy N, Karst D, Xu W, Yang W, Yang Y (2007) Nontraditional biofibers for a new textile industry. J Biobased Mater Bioenergy 1:177–190

    Article  Google Scholar 

  • Jähn A, Schröder MW, Füting M, Schenzel K, Diepenbrock W (2002) Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 58:2271–2279

    Article  Google Scholar 

  • Jeske RC, DiCiccio AM, Coates GW (2007) Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J Am Chem Soc 129:11330–11331

    Article  CAS  PubMed  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43:2883–2892

    Article  CAS  Google Scholar 

  • Kalia S, Sabaa MW (2013) Polysaccharide based graft copolymers. Springer

    Google Scholar 

  • Kalita D, Netravali AN (2017) Thermoset resin based fiber reinforced biocomposites. Text Finish Recent Dev Futur Trends 423–484

    Google Scholar 

  • Kim JH, Lee SB, Kim SJ, Lee YM (2002) Rapid temperature/pH response of porous alginate-g-poly (N-isopropylacrylamide) hydrogels. Polymer (Guildf) 43:7549–7558

    Article  CAS  Google Scholar 

  • Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99

    Article  Google Scholar 

  • Liang F, Wang Y, Sun XS (1999) Curing process and mechanical properties of protein-based polymers. J Polym Eng 19:383–394

    Article  CAS  Google Scholar 

  • Lodha P, Netravali AN (2002) Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mater Sci 37:3657–3665

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74:381–389

    Article  CAS  Google Scholar 

  • McDowall DJ, Gupta BS, Stannett VT (1984) Grafting of vinyl monomers to cellulose by ceric ion initiation. Prog Polym Sci 10:1–50

    Article  CAS  Google Scholar 

  • Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites. J Mater Sci 35:2589–2595

    Article  CAS  Google Scholar 

  • Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29

    Article  Google Scholar 

  • Netravali AN, Pastore CM (2014) Sustainable composites: fibers, resins and applications. DEStech Publications, Inc.

    Google Scholar 

  • Nir MM, Miltz J, Ram A (1993) Update on plastics and the environment: progress and trends. Plast Eng 49:75–93

    Google Scholar 

  • Nzioki BM (2010) Biodegradable polymer blends and composites from proteins produced by animal co-product industry

    Google Scholar 

  • Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  • Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57:67–79

    Article  CAS  Google Scholar 

  • Prakash JW, Raja RD, Anderson NA, Williams C, Regini GS, Bensar K, Rajeev R, Kiruba S, Jeeva S, Das SSM (2008) Ethnomedicinal plants used by Kani tribes of Agasthiyarmalai biosphere reserve, Southern Western Ghats

    Google Scholar 

  • Ray PK, Chakravarty AC, Bandyopadhaya SB (1976) Fine structure and mechanical properties of jute differently dried after retting. J Appl Polym Sci 20:1765–1767

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005a) Properties and potential applications of natural cellulose fibres from cronhusks. Green Chem 7:190–195

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005b) Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46:5494–5500

    Article  CAS  Google Scholar 

  • Robson D (1993) Survey of natural materials for use in structural composites as reinforcement and matrices. Biocomposites Centre, University of Wales

    Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  PubMed  Google Scholar 

  • Saikia CN, Ali F (1999) Graft copolymerization of methylmethacrylate onto high α-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea. Bioresour Technol 68:165–171

    Article  CAS  Google Scholar 

  • Stevens ES (2002) Green plastics: an introduction to the new science of biodegradable plastics. Princeton University Press, Princeton

    Google Scholar 

  • Teli MD, Jadhav AC (2016a) Effect of alkali treatment on the properties of Agave angustifolia v. marginata fibre. Int Res J Eng Technol 3:2754–2761

    Google Scholar 

  • Teli MD, Jadhav AC (2016b) Extraction and characterization of novel lignocellulosic fibre. J Bionanosci 10:418–423

    Article  CAS  Google Scholar 

  • Teli M, Jadhav A (2017) Determination of chemical composition and study on physical properties of Sansevieria roxburghiana lignocellulosic fibre. Eur J Adv Eng Technol 4:183–188

    Google Scholar 

  • Teli MD, Pandit P (2017a) Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.7b02078

    Article  Google Scholar 

  • Teli MD, Pandit P (2017b) Development of thermally stable and hygienic colored cotton fabric made by treatment with natural coconut shell extract. J Ind Text 1528083717725113

    Google Scholar 

  • Teli MD, Pandit P, Basak S (2018) Coconut shell extract imparting multifunction properties to ligno-cellulosic material. J Ind Text 47(6):1261–1290

    Google Scholar 

  • Thaman RR (1995) Urban food gardening in the Pacific Islands: a basis for food security in rapidly urbanising small-island states. Habitat Int 19:209–224

    Article  Google Scholar 

  • Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A Appl Sci Manuf 37:1368–1376

    Article  CAS  Google Scholar 

  • Van der Geer J, Hanraads JAJ, Lupton RA (2000) Clean energy project analysis: Retscreen® engineering & cases textbook, small hydro project analysis chapter. J Sci Commun 163:51–59

    Google Scholar 

  • Van Voorn B, Smit HHG, Sinke RJ, De Klerk B (2001) Natural fibre reinforced sheet moulding compound. Compos Part A Appl Sci Manuf 32:1271–1279

    Article  Google Scholar 

  • Wiener J, Kovačič V, Dejlová P (2003) Differences between flax and hemp. AUTEX Res J 3:58–63

    Google Scholar 

  • Zhang D, Wadsworth LC (1999) Corona treatment of polyolefin films—a review. Adv Polym Technol 18:171–180

    Article  Google Scholar 

  • Zheng L, Dang Z, Zhu C, Yi X, Zhang H, Liu C (2010) Removal of cadmium (II) from aqueous solution by corn stalk graft copolymers. Bioresour Technol 101:5820–5826

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pintu Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jadhav, A.C., Pandit, P., Gayatri, T.N., Chavan, P.P., Jadhav, N.C. (2019). Production of Green Composites from Various Sustainable Raw Materials. In: Muthu, S. (eds) Green Composites. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1969-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1969-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1968-6

  • Online ISBN: 978-981-13-1969-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics