Skip to main content

Microbial Degradation of Petroleum Hydrocarbons: Technology and Mechanism

  • Chapter
  • First Online:
Microbial Action on Hydrocarbons

Abstract

The petrochemical industry has received considerable attention from many sectors in our society. Petroleum spill has been frequently reported due to the lack of appropriate protocols during exploration, refining, transportation, and storage. An in-depth knowledge of petroleum compounds before planning the best strategies of pollutant bioremediation. The petroleum composition is a mixture of different hydrocarbons. Typically, the most found molecules are alkanes, cycloalkanes, and hydrocarbon mono-aromatics, known as BTEX (benzene, toluene, ethylbenzene, and xylene isomers, ortho-, meta-, and para-xylene). Besides the environmental contamination, BTEX compounds deserve attention regarding their high toxicity and a potential threat to human health. Among the available technologies for remediating areas that were impacted by petroleum-derived fuels, microbial biodegradation has emerged as a very effective technique. These technologies can be used as a complementary action to other conventional treatment technologies. Many microorganisms can use BTEX as their only carbon source. An optimized BTEX biodegradation requires an abundant presence of electron acceptors, a high enzymatic expression and an enhanced microbial access to mono-aromatics hydrocarbons. The metabolic pathways related to hydrocarbon degradation will always depend on the microorganism and the growth conditions. Also, compounds will undergo biodegradation only if there are enzymes capable of catalyzing them. The microorganism P. putida has an outstanding metabolic versatility that allows its growth in many different carbon sources. There are many natural plasmids found in P. putida, including the TOL plasmid that provides the genes for degrading toxic mono-aromatic hydrocarbons. However, the strongest motivation behind biodegradation studies is to seek microorganisms with a wide range of metabolic pathways to degrade various pollutants with cost-effective procedures. Therefore, the purpose of this chapter is to expand the discussion about the BTEX bioremediation and microbial metabolism of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouseoud M, Maachi R, Amrane A, Boudergua A (2008) Evaluation of different carbon and nitrogen sources in the production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151

    Article  CAS  Google Scholar 

  • Agência Nacional do Petróleo (ANP) (2016) Etanol anidro na gasolina sobe para 27% a partir de 16/03/16 (2016). Retrieved September 22, 2017, Web Site: http://www.anp.gov.br/?pg=80025&m=gasolina&t1=&t2=gasolina&t3=&t4=&ar=0&ps=1&146003 4118766

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Public Health Statement Total petroleum hydrocarbons. Retrieved September 14, 2017, Web Site: http://www.atsdr.cdc.gov/ToxProfiles/tp123-c1-b.pdf

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Interaction profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). U.S. Department of Health and Human Services, Public Health Service. Retrieved May 25, 2017, Web Site: https://www.atsdr.cdc.gov/interactionprofiles/IPbtex/ip05.pdf

  • Ahmed Z, Song J (2011) Removal of gaseous toluene using immobilized Candida tropicalis in a fluidized bed bioreactor. Biotechnol 1:111–116

    Google Scholar 

  • Akmirza I, Pascual C, Carvajal A, Pérez R, Muñoz R, Lebrero R (2017) Anoxic biodegradation on BTEX in a biotrickling filter. Sci Total Environ 1:457–465

    Article  CAS  Google Scholar 

  • Almeda R, Wambauch Z, Chai C, Wang Z, Liu Z, Buskey EJ (2013) Effects of crude oil exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous zooplankton. PLoS One 8:1–15

    Google Scholar 

  • Alvarez PJJ, Hunt CS (2002) The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation. Rev Latinoam Microbiol 44:83104

    Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156

    Article  CAS  Google Scholar 

  • Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449

    Article  CAS  PubMed  Google Scholar 

  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, bioestimulation and bioaugmentation. Bioresour Technol 96:1049–1055

    Google Scholar 

  • Blasi B, Tafer H, Kustor C, Poyntner C, Lopandic K, Sterflinger K (2017) Genomic and transcriptomic analysis of the toluene degrading black yeast Cladophialophora immunda. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Bolden AL, Kwiatkowski CF, Colborn T (2015) New look at BTEX: are ambient levels a problem? Environ Sci Technol 49:5261–5276

    Article  CAS  PubMed  Google Scholar 

  • Bowen SE, Hannigan JH (2006) Development toxicity of prenatal exposure to toluene. AAPS J 8:419–424

    Article  Google Scholar 

  • Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55:1323–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juaréz JF, Valderrama A, Barragán MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalca L, Di Gennaro P, Colombo M, Andreoni V, Bernasconi S, Ronco I, Bestetti G (2000) Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Res Microbiol 151:877–887

    Article  CAS  PubMed  Google Scholar 

  • Cesarino I, Cesarino V, Moraes FC, Ferreira TCR, Lanza MRV, Mascaro LH, Machado SAS (2013) Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Mater Chem Phys 141:304–309

    Article  CAS  Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1:117–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Coledam DAC, Pupo MMS, Silva BF, Silva AJ, Eguiluz KIB, Salazar-Banda GR, Aquino JM (2017) Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation. Chemosphere 168:638647

    Article  CAS  Google Scholar 

  • Colla LM, Primaz AL, Lima M, Bertolin TE, Costa JAV (2008) Isolamento e seleção de fungos para biorremediação a partir de solo contaminado com herbicidas triazínicos. Cienc Agrotec 32:809–813

    Article  CAS  Google Scholar 

  • Corseuil HX, Weber JRWJ (1994) Potential biomass limitations on rates of degradation on monoaromatic hydrocarbons by indigenous microbes in subsurface soils. Water Res 28:1415–1423

    Article  CAS  Google Scholar 

  • Corseuil HX, Gomez DE, Schambeck CM, Ramos DT, Alvarez PJJ (2015) Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation. J Contam Hydrol 174:1–9

    Article  CAS  PubMed  Google Scholar 

  • Cozzareli IM, Bekins BA, Eganhouse RP, Warren E, Essaid HI (2010) In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J Contam Hydrol 111:48–64

    Article  CAS  Google Scholar 

  • D’Alvise PW, Sjøholm OR, Yankelevich T, Jin Y, Wuertz S, Smets BF (2010) TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett 312:84–92

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13

    Google Scholar 

  • Das S, Dash HR (2014) Microbial biodegradation and bioremediation. A potential toll for restoration of contaminated areas. Microb Biodegrad Bioremed:1–22

    Google Scholar 

  • Deeb RA, Sharp JO, Stocking A, Mcdonald S, West KA, Laugier M, Alvarez PJJ, Kavanaugh MC, Alvarez-cohen L (2002) Impact of ethanol on benzene plume lengths: microbial and modeling studies. J Environ Eng 128:868–875

    Article  CAS  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutrit 10:244–267

    Google Scholar 

  • Domínguez-Cuevas P, Marqués S (2017) Current view of the mechanisms controlling the transcription of the TOL plasmid aromatic degradation pathways. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Springer, Cham, pp 1–22

    Google Scholar 

  • Dong CD, Tsai ML, Chen CW, Hung CM (2017) Heterogeneous persulfate oxidation of BTEX and MTBE using Fe3O4-CB magnetite composites and the cytotoxicity of degradation products. Int Biodeterior Biodegrad 124:109–118

    Article  CAS  Google Scholar 

  • El-Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2:1104–1122

    Article  CAS  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16

    Article  Google Scholar 

  • Freitas BG, Brito JGM, Brasileiro PPF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:1–9

    Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, Inc, New York, pp 181–252

    Google Scholar 

  • Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856871

    Article  Google Scholar 

  • Gusmão VR, Martins TH, Chinalia FA, Sakamoto IK, Thiemann OH (2006) BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem 41:1391–1400

    Article  CAS  Google Scholar 

  • Hollender J, Althoff K, Mundt M, Dott W (2003) Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test. Chemosphere 53:269–275

    Article  CAS  PubMed  Google Scholar 

  • International Agency Research on Cancer (IARC) (2000) Monographs on the evaluation of carcinogenic risks to humans – some industrial chemicals. In: Ethylbenzene, vol 77. World Health Organization, Lyon, pp 227–266. Retrieved January 18, 2017, Web Site: https://www.ncbi.nlm.nih.gov/books/NBK390856/pdf/Bookshelf_NBK390856.pdf

  • Irshaid FI, Jacob JH (2015) Screening and characterization of aerobic xylene-degrading bacteria from gasoline contaminated soil sites around gas stations in northern Jordan. J Biol Sci 15:167–176

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: life of science. In: Biodegradation: involved microorganisms and genetically engineered microorganisms. InTech, Rijeka, pp 289–320

    Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodaei K, Nassery HR, Asadi IMM, Mohammadzadeh H, Mahmoodlu MG (2017) BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX30). Int Biodeterior Biodegrad 116:234–242

    Article  CAS  Google Scholar 

  • Kinder KM, Gellasch CA, Dusenbury JA, Timmes TC, Hughes TM (2017) Evaluating the impact of ambient benzene vapor concentrations of product water from condensation water from air technology. Sci Total Environ 590-591:60–68

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Khanna S (2010) Diversity of 16S rRNA and dioxygenase genes detected in coal tarcontaminated site undergoing active bioremediation. J Appl Microbiol 108:1252–1262

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Roh JR, Kim HS (1994) Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture. Biotechnol Bioeng 43:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Jung KH, Choi SH, Kin HS (1995) Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl Environ Microbiol 61:2211–2217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Littlejohns JV, Daugulis AJ (2008) Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium. Process Biochem 43:1068–1076

    Article  CAS  Google Scholar 

  • Lueders T (2017) The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 93:1–13

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2016) Microbiologia de Brock, 14th edn. Artmed, Porto Alegre, 987 p

    Google Scholar 

  • Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35:860–870

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Alonso M, Gaju N (2005) El papel de los tapetes microbianos en la biorrecuperación de zonas litorales sometidas a la contaminación por vertidos de petróleo. Ecosistemas 14:79–91

    Google Scholar 

  • Martino CD, López NI, Iustman R (2012) Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int Biodeterior Biodegrad 67:15–20

    Article  CAS  Google Scholar 

  • Mazzeo DEC, Levy CE, De Angelis DF, Marin-Morales MA (2010) BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ 408:4334–4340

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Roy P (2011) BTEX: a serious ground-water contaminant. Res J Environ Sci 5:394–398

    Article  CAS  Google Scholar 

  • Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81

    Article  CAS  Google Scholar 

  • Montagnolli RN, Bidoia ED (2012) Petroleum derivatives biodegradation: environmental impact and bioremediation strategies. Amazon, 104 p

    Google Scholar 

  • Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Bordoloi NK (2012) Biodegradation of benzene, toluene and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environ Sci Pollut Res 19:3380–3388

    Article  CAS  Google Scholar 

  • Nascimento Filho I, Vieceli NC, Cardoso EM, Lovatel ER (2013) Analysis of BTEX in experimental columns containing neat gasoline and gasoline-ethanol. J Braz Chem Soc 24:410–417

    Article  Google Scholar 

  • Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225

    Article  CAS  PubMed  Google Scholar 

  • Noel C, Gourry JC, Deparis J, Blessing M, Ignatiadis I, Guimbaud C (2016) Combining geoelectrical measurements and CO2 analyses to monitor the enhanced bioremediation of hydrocarbon-contaminated soils: a field implementation. Appl Environ Soil Sci 2016:1–15

    Article  CAS  Google Scholar 

  • Nwankwegu A, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11

    Article  Google Scholar 

  • Oberoi AS, Philip L (2017) Variation in toxicity during the biodegradation of various heterocyclic homocyclic aromatic hydrocarbons in single and multi-substrate systems. Ecotoxicol Environ Safety 135:337–346

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernández ML, Rodríguez A, Sánchez-Salinas E, Castrejóngodínez ML (2014) Chapter 5. Bioremediation of soils contaminated with pesticides: experiences in Mexico. In: Bioremediation in Latin America, current research and perspectives. Springer, New York, pp 69–100

    Google Scholar 

  • Otenio MH, Silva MTL, Marques MLO, Roseiro JC, Bidoia ED (2005) Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz J Microbiol 36:258–261

    Article  CAS  Google Scholar 

  • Padhi SK, Gokhale S (2017) Benzene biodegradation by indigenous mixed microbial culture: kinetic modelling and process optimization. Int Biodeterior Biodegrad 119:511–519

    Article  CAS  Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:1–7

    Article  CAS  Google Scholar 

  • Prenafeta-Boldú FX, Vervoort J, Grotenhuis JTC, Van Groenestijin JW (2002) Substrate interactions during the biodegradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol 68:2660–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince RC, Nash GW, Hill SJ (2016) The biodegradation of crude oil in the deep ocean. Mar Pollut Bull 111:354–357

    Article  CAS  PubMed  Google Scholar 

  • Qu D, Zhao Y, Sun J, Ren H, Zhou R (2015) BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1. Can J Microbiol 61:691–699

    Article  CAS  PubMed  Google Scholar 

  • Rahul MAK, Balomajumder C (2013) Biological treatment and modelling aspect of BTEX abatement process in a biofilter. Bioresour Technol 142:9–17

    Article  CAS  PubMed  Google Scholar 

  • Reardon KF, Mosteller DC, Rogers JB, Duteau N, Kim K-H (2002) Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ Health Perspect 110:1005–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rüegg I, Hafner T, Bucheli-Witschel M, Egli T (2007) Dynamics of benzene and toluene degradation in Pseudomonas putida F1 in the presence of the alternative substrate succinate. Eng Life Sci 7:331–342

    Article  CAS  Google Scholar 

  • Sandu C, Popescu M, Rosales E, Pazos M, Lazar G, Sanromán MA (2017) Electrokinetic oxidant soil flushing: a solution for in situ remediation of hydrocarbons polluted soils. J Electroana Chem 799:1–8

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ Pollut 150(1):166–176

    Google Scholar 

  • Shim H, Hwang B, Lee SS, Kong SH (2005) Kinetics of BTEX biodegradation by a coculture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions. Biodegradation 16:319–327

    Article  CAS  PubMed  Google Scholar 

  • Souza MM, Colla TT, Bücker F, Ferrão MF, Huang CT, Andreazza R, Camargo FAO, Bento FM (2016) Biodegradation potential of Serratia marcescens for diesel/biodiesel blends. Int Biodeterior Biodegradation 110:141–146

    Article  CAS  Google Scholar 

  • Trellu C, Mousset E, Pechaud Y, Huguenot D, Van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mat 306:149–174

    Article  CAS  Google Scholar 

  • Turner NR, Renegar DA (2017) Petroleum hydrocarbon toxicity to corals: a review. Mar Pollut Bull 119:1–16

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:7183

    Article  CAS  Google Scholar 

  • Weelink SAB, Van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Bio/Tech 9:359–385

    Article  CAS  Google Scholar 

  • Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138151

    Article  CAS  Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolicka D, Suszek A, Borkowski A, Bielecka A (2009) Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresour Technol 10:3221–3227

    Article  CAS  Google Scholar 

  • Xie F, Lu Q, Toledo RA, Shim H (2016) Combined removal of an MTBE and BTEX mixture using indigenous microbe immobilized on waste silica gel. Int J Environ Sci Dev 7:244–247

    Article  CAS  Google Scholar 

  • Xu Z, Chai J, Wu Y, Qin R (2015) Transport and biodegradation modeling of gasoline spills in soil aquifer system. Environ Earth Sci 74:2871–2882

    Article  CAS  Google Scholar 

  • Yu SH, Ke L, Wong YS, Tam NFY (2005) Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang C, Cheng Z, Yao Y, Chen J (2013) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90:1340–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ederio Dino Bidoia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claro, E.M.T., Cruz, J.M., Montagnolli, R.N., Lopes, P.R.M., Júnior, J.R.M., Bidoia, E.D. (2018). Microbial Degradation of Petroleum Hydrocarbons: Technology and Mechanism. In: Kumar, V., Kumar, M., Prasad, R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_6

Download citation

Publish with us

Policies and ethics