Skip to main content

Melatonin and Its Antiaging Activity: New Approaches and Strategies for Age-Related Disorders

  • Chapter
  • First Online:
Molecular Basis and Emerging Strategies for Anti-aging Interventions

Abstract

Melatonin (N-acetyl-5-methoxy tryptamine, MLT) is a hormone that is produced by the pineal gland. It is synthesized regularly with high levels at night. Age-related decline in MLT contributes to an increased susceptibility to a number of pathophysiological disorders like neurodegenerative diseases, cancer, and aging. There are strong evidences that both Alzheimer’s disease and Parkinson’s disease are associated with low levels of MLT. Because of its wide-ranging antioxidant and radical scavenger effects, MLT may act as a protective agent against many age-related illnesses. MLT’s protection may be possible for both protein and fat tissues in the body by crossing all cell membrane. Currently available data make us to determine that MLT is beneficial for the aging process. Administration of MLT is able to increase the life span of several animals including some rodents. Although, to preserve health in old age becomes a primary goal for biomedicine, there is a necessity for extensive studies on the administration of MLT in order to increase the quality of life in advanced age. In this chapter experimental approaches to antiaging activity of MLT as well as its possible therapeutic significance are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CR:

Caloric restriction

GSH:

Glutathione

HD:

Huntington disease

HNE:

4-hydroxy-2-nonenal

MDA:

Malondialdehyde

miRNA:

MicroRNA

MLT:

Melatonin

mtDNA:

Mitochondrial DNA

NAS:

N-acetylserotonin

OS:

Oxidative stress

PUFA:

Fatty acid

ROS:

Reactive oxygen species

SIRT:

Sirtuin

References

  • Anisimov VN, Alimovaa IN, Baturina DA et al (2003) Dose-dependent effect of melatonin on life span and spontaneous tumor incidence in female SHR mice. Exp Gerontol 38:449–461

    Article  CAS  PubMed  Google Scholar 

  • Anisimov VN, Popovich IG, Zabezhinski MA et al (2006) Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 1757:573–589

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    Article  CAS  PubMed  Google Scholar 

  • Bekris LM, Yu C-E, Bird TD et al (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergamini E, Cavallini G, Donati A et al (2004) The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 36:2392–2404

    Article  CAS  PubMed  Google Scholar 

  • Berneburg M, Grether-Beck S, Kürten V et al (1999) Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biolumin Chemilumin 274:15345–15349

    CAS  Google Scholar 

  • Blander G, Guarente L (2004) The Sirt2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  • Bonilla E, Medina-Leendertz S, Diaz S (2002) Extension of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Exp Gerontol 37:69–638

    Article  Google Scholar 

  • Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278:55–67

    Article  CAS  PubMed  Google Scholar 

  • Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakatay U, Telci A, Kayalì R et al (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36:221–229

    Article  CAS  PubMed  Google Scholar 

  • Cardinali DP, Furio AM, Brusco LI (2010) Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol 8:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Vico A, Calvo JR, Abreu P et al (2004) Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 18:537–539

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Vico A, Guerrero JM, Lardone PJ et al (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27:189–200

    Article  CAS  PubMed  Google Scholar 

  • Cavallini G, Donati A, Gori Z et al (2008) Towards an understanding of the anti-aging mechanism of caloric restriction. Curr Aging Sci 1:4–9

    Article  PubMed  Google Scholar 

  • Ceraulo L, Ferrugia M, Tesoriere L et al (1999) Interactions of melatonin with membrane models: portioning of melatonin in AOT and lecithin reversed micelles. J Pineal Res 26:108–112

    Article  CAS  PubMed  Google Scholar 

  • Chahbouni M, Escames G, Venegas C et al (2010) Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res 48:282–289

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty S, Rizvi SI (2011) Day and night GSH and MDA levels in healthy adults and effects of different doses of melatonin on these parameters. Int J Cell Biol 2011:404591–404595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chua CC, Gao J et al (2003) Protective effect of melatonin on myocardial infarction. Am J Physiol Heart Circ Physiol 284:H1618–H1624

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Qing W, Sun M et al (2015) Melatonin protects hepatocytes against bile acid-induced mitochondrial oxidative stress via the AMPK-SIRT3-SOD2 pathway. Free Radic Res 49:1–32

    Article  CAS  Google Scholar 

  • Cheng Y, Cai L, Jiang P et al (2013) SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol 715:219–229

    Article  CAS  PubMed  Google Scholar 

  • Chomyn A, Attardi G (2003) MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 304:519–529

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Mansfield J, Garfinkel D, Lipson S (2000) Melatonin for treatment of sundowning in elderly persons with dementia—a preliminary study. Arch Gerontol Geriatr 31:65–76

    Article  CAS  PubMed  Google Scholar 

  • Cruz MH, Leal CL, Cruz JF et al (2014) Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology 82:925–932

    Article  CAS  PubMed  Google Scholar 

  • Delgado J, Terrón MP, Garrido M et al (2012) Jerte Valley cherry-based product modulates serum inflammatory markers in rats and ringdoves. J Appl Biomed 10:41–50

    Article  CAS  Google Scholar 

  • Dreher F, Gabard B, Schwindt DA et al (1998) Topical melatonin in combination with vitamins E and C protects skin from ultraviolet-induced erythema: a human study in vivo. Br J Dermatol 139:332–339

    Article  CAS  PubMed  Google Scholar 

  • Espino J, Pariente JA, Rodríguez AB (2012) Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Long 2012:670294–670299

    Google Scholar 

  • Esquifino AI, Pandi-Perumal SR, Cardinali DP (2004) Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev 4:423–433

    Article  CAS  Google Scholar 

  • Eşrefoğlu M, Seyhan M, Gül M et al (2005) Potent therapeutic effect of melatonin on aging skin in pinealectomized rats. J Pineal Res 39:231–237

    Article  PubMed  CAS  Google Scholar 

  • Eşrefoğlu M, Gül M, Seyhan M et al (2006) Ultrastructural clues for the potent therapeutic effect of melatonin on aging skin in pinealectomized rats. Fundam Clin Pharmacol 20:605–611

    Article  PubMed  CAS  Google Scholar 

  • Fischer TW, Scholz G, Knöll B et al (2002) Melatonin suppresses reactive oxygen species in UV-irradiated leukocytes more than vitamin C and trolox. Skin Pharmacol Appl Ski Physiol 15:367–373

    Article  CAS  Google Scholar 

  • Fischer TW, Sweatman TW, Semak I et al (2006) Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J 20:1564–1566

    Article  CAS  PubMed  Google Scholar 

  • Fischer TW, Slominski A, Zmijewski MA et al (2008) Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 17:713–730

    Article  CAS  PubMed  Google Scholar 

  • Galano A (2016) Computational-aided design of melatonin analogues with outstanding multifunctional antioxidant capacity. RSC Adv 6:22951–22963

    Article  CAS  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257

    Article  CAS  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2017) Melatonin and related compounds: chemical insights into their protective effects against oxidative stress. Curr Org Chem 21:2077–2095

    Article  CAS  Google Scholar 

  • Gitto E, Reiter RJ, Amodio A et al (2004) Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res 36:250–255

    Article  CAS  PubMed  Google Scholar 

  • Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harbor Symp Quant Biol 72:483–488

    Article  CAS  PubMed  Google Scholar 

  • Guo XH, Li YH, Zhao YS et al (2017) Anti-aging effects of melatonin on the myocardial mitochondria of rats and associated mechanisms. Mol Med Rep 15:403–410

    Article  CAS  PubMed  Google Scholar 

  • Gurer-Orhan H, Ince E, Konyar D et al (2017) The role of oxidative stress modulators in breast cancer. Curr Med Chem (in print)

    Google Scholar 

  • Gurer-Orhan H, Suzen S (2015) Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr Med Chem 22:490–499

    Article  CAS  PubMed  Google Scholar 

  • Gurer-Orhan H, Karaaslan C, Ozcan S et al (2016) Novel indole-based melatonin analogues: evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg Med Chem 24:1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Gurkok G, Coban T, Suzen S (2009) Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: synthesis and structure-activity relationships. J Enzyme Inhib Med Chem 24:506–515

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R (2010) Melatonin metabolism in the central nervous system. Curr Neuropharmacol 8:168–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardeland R (2012) Melatonin in aging and disease-multiple consequences of reduced secretion, options and limits of treatment. Aging and Disease 3:194–225

    PubMed  Google Scholar 

  • Hardeland R, Reiter RJ, Poeggeler B et al (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17:347–357

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126

    Article  CAS  PubMed  Google Scholar 

  • Head E, Liu J, Hagen TM et al (2002) Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 82:375–381

    Article  CAS  PubMed  Google Scholar 

  • Heutling D, Lehnert H (2008) Hormone therapy and anti-aging: is there an indication? Internist 49:570–579

    Article  CAS  PubMed  Google Scholar 

  • Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahnke G, Marr M, Myers C et al (1999) Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci 50:271–279

    Article  CAS  PubMed  Google Scholar 

  • Jansen-Dürr P, Osiewacz HD (2002) Healthy ageing: a question of stress, damage and repair. Meeting on mechanisms of biological ageing. EMBO Rep 3:1127–1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin S (2006) Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2:80–84

    Article  CAS  PubMed  Google Scholar 

  • Johns JR, Platts JA (2014) Theoretical insight into the antioxidant properties of melatonin and derivatives. Org Biomol Chem 12(39):7820–7827

    Article  CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23:2803–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung-Hynes B, Huang W, Reiter RJ et al (2010) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49:60–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung-Hynes B, Schmit TL, Reagan-Shaw SR et al (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res 50:140–149

    CAS  PubMed  Google Scholar 

  • Kaewsuk S, Sae-ung K, Phansuwan-Pujito P et al (2009) Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain. Neurochem Int 55:397–405

    Article  CAS  PubMed  Google Scholar 

  • Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15:894–903

    Article  CAS  PubMed  Google Scholar 

  • Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Karasek M, Reiter RJ (2002) Melatonin and aging. Neuro Endocrinol Lett 23:14–16

    CAS  PubMed  Google Scholar 

  • Kireev RA, Vara E, Tresguerres JAF (2013) Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology 14:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kireev RA, Vara E, Viña J et al (2014) Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age (Dordr) 36:9707–9715

    Article  CAS  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  • Kleszczynski K, Fischer TW (2012) Melatonin and human skin aging. Dermatoendocrinology 4:245–252

    Article  CAS  Google Scholar 

  • Kriete A, Lechner M, Clearfield D et al (2011) Computational systems biology of aging. Wiley Interdiscip Rev Syst Biol Med 3:414–428

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Lee WS, Suh SI et al (2003) Melatonin reduces ultraviolet-B induced cell damages and polyamine levels in human skin fibroblasts in culture. Exp Mol Med 35:263–268

    Article  CAS  PubMed  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872

    Article  CAS  PubMed  Google Scholar 

  • Manda K, Bhatia AL (2003) Melatonin-induced reduction in age-related accumulation of oxidative damage in mice. Biogerontology 4:133–139

    Article  CAS  PubMed  Google Scholar 

  • Martín V, Sainz RM, Antolín I et al (2002) Several antioxidant pathways are involved in astrocyte protection by melatonin. J Pineal Res 33:204–212

    Article  PubMed  Google Scholar 

  • Mayo JC, Sainz RM, González Menéndez P et al (2017) Melatonin and sirtuins: a “not-so unexpected” relationship. J Pineal Res 62:e12391 in print

    Article  CAS  Google Scholar 

  • McMullan CJ, Schernhammer ES, Rimm EB et al (2013) Melatonin secretion and the incidence of type 2 diabetes. JAMA 309:1388–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molpeceres V, Mauriz JL, García-Mediavilla MV et al (2007) Melatonin is able to reduce the apoptotic liver changes induced by aging via inhibition of the intrinsic pathway of apoptosis. J Gerontol A Biol Sci Med Sci 62:687–695

    Article  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  • Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192

    Article  CAS  PubMed  Google Scholar 

  • Nicolle MM, Gonzalez J, Sugaya K et al (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107:415–431

    Article  CAS  PubMed  Google Scholar 

  • Ochoa JJ, Vilchez MJ, Palacios MA et al (2003) Melatonin protects against lipid peroxidation and membrane rigidity in erythrocytes from patients undergoing cardiopulmonary bypass surgery. J Pineal Res 35:104–108

    Article  CAS  PubMed  Google Scholar 

  • Oxenkrug G, Requintina P, Bachurin S (2001) Antioxidant and antiaging activity of N-acetylserotonin and melatonin in the in vivo models. Ann N Y Acad Sci 939:190–199

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou N, Tooten PC, van Ederen AM et al (2001) Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid 8:11–21

    Article  CAS  PubMed  Google Scholar 

  • Pappolla MA, Omar RA, Kim KS et al (1992) Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am J Pathol 140:621–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pappolla MA, Chyan YJ, Poeggeler B et al (1999) Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: prevention by melatonin. J Pineal Res 27:226–229

    Article  CAS  PubMed  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V et al (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48:297–310

    Article  CAS  PubMed  Google Scholar 

  • Pawlikowski M, Winczyk K, Karasek M (2002) Oncostatic action of melatonin: facts and question marks. Neuro Endocrinol Lett 23:S24–S29

    Google Scholar 

  • Poeggeler B (2005) Melatonin, aging, and age-related diseases. Perspectives for prevention, intervention, and therapy. Endocrine 27:201–212

    Article  CAS  PubMed  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A et al (2009) Biological and chemical approaches 946 to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  • Ramis MR, Esteban S, Miralles A et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146:28–41

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tan DX (2003) What constitutes a physiological concentration of melatonin? J Pineal Res 34:79–80

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Osuna C et al (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Res 7:444–458

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Mayo JC et al (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36:1323–1329

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Mayo JC et al (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50:1129–1146

    CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Maldonado MD (2005) Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res 39:215–216

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010a) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Paredes SD et al (2010b) Beneficial effects of melatonin in cardiovascular disease. Ann Med 42:276–285

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29:325–333

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Zhou Z et al (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX et al (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Rosales-Corral SA, Tan DX et al (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci:18 (in print)

    Google Scholar 

  • Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27:647–653

    Article  CAS  PubMed  Google Scholar 

  • Rizvi SI, Jha R (2011) Strategies for the discovery of anti-aging compounds. Expert Opin Drug Discov 6:89–102

    Article  CAS  PubMed  Google Scholar 

  • Rodella LF, Favero G, Rossini C et al (2013) Aging and vascular dysfunction: beneficial melatonin effects. Age (Dordr) 35:103–115

    Article  CAS  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriquez C, Mayo JC, Sainz RM et al (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  Google Scholar 

  • Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A et al (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52:167–202

    Article  CAS  PubMed  Google Scholar 

  • Rúzsás C, Mess B (2000) Melatonin and aging. A brief survey. Neuro Endocrinol Lett 21:17–23

    PubMed  Google Scholar 

  • Sartori C, Dessen P, Mathieu C et al (2009) Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology 150:5311–5317

    Article  CAS  PubMed  Google Scholar 

  • Savaskan E, Ayoub MA, Ravid R et al (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 38:10–16

    Article  CAS  PubMed  Google Scholar 

  • Shirinzadeh H, Ince E, Westwell AD et al (2016) Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: studies on their antioxidant, chemopreventive and cytotoxic activities. J Enzyme Inhib Med Chem 31:1312–1321

    Article  CAS  PubMed  Google Scholar 

  • Shukla M, Govitrapong P, Boontem P et al (2017) Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 15:1010–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slominski A, Wortsman J, Tobin DJ (2005) The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J 19:176–194

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan V, Maestroni G, Cardinali D (2005) Melatonin, immune function and aging. Immun Ageing 2:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan V, Spence DW, Pandi-Perumal SR et al (2008) Therapeutic actions of melatonin in cancer: possible mechanisms. Integr Cancer Ther 7:189–203

    Article  CAS  PubMed  Google Scholar 

  • Suzen S (2007) Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. In: Khan MTH (ed) Topics in heterocyclic chemistry, bioactive heterocycles, vol 11. V Spinger-Verlag, Berlin/Heidelberg, pp 145–178

    Google Scholar 

  • Suzen S (2013) Melatonin and synthetic analogs as antioxidants. Curr Drug Delivery 10:71–75

    Article  CAS  Google Scholar 

  • Suzen S (2015) Evaluation of synthetic melatonin analogue antioxidant compounds. In: Srinivasan V, Gobbi G, Shillcutt SD, Suzen S (eds) Melatonin: therapeutic value and neuroprotection (Chapter 21). Taylor & Francis, Boca Raton, pp 259–269

    Google Scholar 

  • Suzen S, Bozkaya P, Coban T et al (2006) Investigation of the in vitro antioxidant behaviour of some 2-phenylindole derivatives: discussion on possible antioxidant mechanisms and comparison with melatonin. J Enzyme Inhib Med Chem 21:405–411

    Article  CAS  PubMed  Google Scholar 

  • Tajes M, Gutierrez-Cuesta J, Ortuño-Sahagun D et al (2009) Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res 47:228–237

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Takasaki A, Taketani T et al (2014) Melatonin and female reproduction. J Obstet Gynaecol Res 40:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Kawamoto M, Sato S et al (2017) Long-term melatonin treatment delays ovarian aging. J Pineal Res 62:e12381–e12314

    Article  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B et al (1993) Melatonin a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ et al (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137–159

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Burkhardt S (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Reiter RJ, Manchester LC (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad-spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–198

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Terron MP et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Esteban-Zubero E et al (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906

    Article  CAS  PubMed  Google Scholar 

  • Tekiner-Gulbas B, Westwell AD, Suzen S (2013) Oxidative stress in carcinogenesis: new synthetic compounds with dual effects upon free radicals and cancer. Curr Med Chem 20:4451–4459

    Article  CAS  PubMed  Google Scholar 

  • Tresguerres IF, Tamimi F, Eimar H et al (2014) Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 17:341–346

    Article  CAS  PubMed  Google Scholar 

  • Vijayalaxmi T Jr, Reiter RJ, Herman TS (2002) Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 20:2575–2601

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova IA, Shevchenko AI et al (2005) Effect of light regimen on indices of biological age and age-related pathology. Med Acad J 5:18–20

    Google Scholar 

  • Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11

    Article  CAS  PubMed  Google Scholar 

  • Waddell BJ, Wharfe MD, Crew RC et al (2012) Mark PJ. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta 33:533–539

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Jin BZ, Ai F et al (2012) The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol 69:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Wu YU, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152

    Article  CAS  PubMed  Google Scholar 

  • Yi C, Pan X, Yan H et al (2005) Effects of melatonin in age-related maculardegeneration. Ann N Y Acad Sci 1057:384–392

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz AD, Coban T, Suzen S (2012) Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J Enzyme Inhib Med Chem 27:428–436

    Article  CAS  PubMed  Google Scholar 

  • Yoneda M, Katsumata K, Hayakawa M et al (1995) Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 209:723–729

    Article  CAS  PubMed  Google Scholar 

  • Yoo DY, Kim W, Lee CH et al (2012) Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. J Pineal Res 52:21–28

    Article  CAS  PubMed  Google Scholar 

  • Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Asp Med 24:293–303

    Article  CAS  Google Scholar 

  • Zhang YC, Wang ZF, Wang Q et al (2004) Melatonin attenuates beta-amyloid-induced inhibition of neurofilament expression. Acta Pharmacol Sin 25:447–451

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Suzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzen, S. (2018). Melatonin and Its Antiaging Activity: New Approaches and Strategies for Age-Related Disorders. In: Rizvi, S., Çakatay, U. (eds) Molecular Basis and Emerging Strategies for Anti-aging Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-13-1699-9_14

Download citation

Publish with us

Policies and ethics