Skip to main content

Stabilometry to Evaluate Severity of Motion Sickness on Displays

  • Chapter
  • First Online:
Stereopsis and Hygiene

Abstract

Stereoscopic imaging techniques are used not only in amusement but also in the industrial, medical care, and educational fields; however, symptoms due to stereopsis have been reported. In this chapter, some bio-system and bio-mechanism are introduced although the overstimulation theory cannot explain the space motion sickness and this simulator sickness. We especially focus on the visual function as lens accommodation and the convergence and the vestibular system, which is considered to be sensitive to evaluate the severity of the motion sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ukai K, Howarth PA. Visual fatigue caused by viewing stereoscopic motion images. Displays. 2008;29:106–16.

    Article  Google Scholar 

  2. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Avi Psychol. 1993;3:203–20.

    Article  Google Scholar 

  3. Scibora LM, Villard S, Bardy B, Stoffregen TA. Wider stance reduces body sway and motion sickness. Proc VIMS. 2007;2007:18–23.

    Google Scholar 

  4. Himi N, Koga T, Nakamura E, Kobashi M, Yamane M, Tsujioka K. Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Auto Neurosci Basic Clin. 2004;116:46–53.

    Article  Google Scholar 

  5. Holomes SR, Griffin MJ. Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J Psychophysiol. 2001;15:35–42.

    Article  Google Scholar 

  6. Yokota Y, Aoki M, Mizuta K. Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Otolaryngol. 2005;125:280–5.

    Article  PubMed  Google Scholar 

  7. Fujikake K, Miyao M, Honda R, Omori M, Matsuura Y, Takada H. Evaluation of high-quality LCDs displaying moving pictures, on the basis of the form obtained from Statokinesigrams. Forma. 2007;22(2):199–229.

    Google Scholar 

  8. Fujikake K, Takada H, Omori M, Miyao M. Evaluation of high-quality LCDs displaying moving pictures by use of the form obtained from Statokinesigrams and the dynamics. Forma. 2007;22(3):217–29.

    Google Scholar 

  9. Takada H, Miyao M, Fujikake K, Furuta M, Matsuura Y, Kitaoka Y. Effect of LCDs displaying blurred images on the postural control system. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2008. 2008; p. 2149–52.

    Google Scholar 

  10. Takada H, Fujikake K, Omori M, Hasegawa S, Watanabe T, Miyao M. Reduction of body sway can be evaluated by sparse density during exposure to movies on liquid crystal displays. Proc Int Fed Med Biol Eng. 2009;23:987–91.

    Google Scholar 

  11. Takada H, Fujikake K, Miyao M. On a qualitative method to evaluate motion sickness induced by stereoscopic images on liquid crystal displays. Lect Notes Comput Sci. 2009;5622:254–62.

    Article  Google Scholar 

  12. Takada H, Matsuura Y, Takada M, Miyao M. Comparison in degree of the motion sickness induced by a 3-D movie on an LCD and an HMD. Lect Notes Comput Sci. 2011;6773:371–9.

    Article  Google Scholar 

  13. Takada H, Yamamoto T, Miyao M, Aoyama T, Furuta M, Shiozawa T. Effect of a stereoscopic movie on the correlation between head acceleration and body sway. Lect Notes Comput Sci. 2009;5622:120–7.

    Article  Google Scholar 

  14. Takada H, Yamamoto T, Sugiura A, Miyao M. Evaluation of motion sickness induced by stereoscopic images using head acceleration and body sway. In: Proceedings of the International Association for Development of the Information Society (IADIS) International Conferences, Web Virtual Reality and Three-Dimensional Worlds, 2010. 2010; p. 539–40.

    Google Scholar 

  15. Takada H, Fujikake K, Watanabe T, Hasegawa S, Omori M, Miyao M. A method for evaluating motion sickness induced by watching stereoscopic images on a head-mounted display. Proc SPIE-IS&T. 2009;SPIE7237(72371P):1–8.

    Google Scholar 

  16. Nishihara T, Tahara H. Apparatus for recovering eyesight utilizing stereoscopic video and method for displaying stereoscopic video. US Patent 7404639; 2008.

    Google Scholar 

  17. Takada M, Fukui Y, Matsuura Y, Sato M, Takada H. Peripheral viewing during exposure to a 2D/3D video clip: effects on the human body. Environ Health Prev Med. 2015;20(2):79–89.

    Article  PubMed  Google Scholar 

  18. Takada M, Miyao M, Takada H. Subjective evaluation of peripheral viewing during exposure to a 2D/3D video clip. Proc IEEE VR. 2015;2015:291–2.

    Google Scholar 

  19. Winter DA, Patla AE, Prince F, Ishac M. Stiffness control of balance in quiet standing. J Neurophysiol. 1998;80:1211–21.

    Article  CAS  PubMed  Google Scholar 

  20. Gatev P, Thomas S, Kepple T, Hallett M. Feedforward ankle strategy of balance in quiet stance in adults. J Physiol. 1999;514:915–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loram D, Kelly SM, Laike M. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance? J Physiol. 2001;523:879–91.

    Article  Google Scholar 

  22. Kaga K. Structure of Vertigo. Tokyo: Kanehara; 1992. p. 23–6. 95–100. (In Japanese).

    Google Scholar 

  23. Okawa T, Tokita T, Shibata Y, Ogawa T, Miyata H. Stabilometry: significance of locus length per unit area (L/A). Equilib Res. 1995;54:283–93.

    Article  Google Scholar 

  24. Grillner S, Georgopoulos AP, Jordan LM. Selection and initiation of motor behavior. In: Stein PSG, Grillner S, Selverston AI, et al., editors. Neurons, networks, and motor behavior. Cambridge: MIT Press; 1997. p. 3–19.

    Google Scholar 

  25. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res. 2004;50:137–51.

    Article  CAS  PubMed  Google Scholar 

  26. Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. J Neurol. 2008;255:19–29.

    Article  PubMed  Google Scholar 

  27. Kawada M, Inase M. Structure, function, and materials of the human body 8. Tokyo: Nihon Iji Shinpou; 2004. (In Japanese).

    Google Scholar 

  28. Fukuda H, Koga T, Furukawa N, Nakamura E, Shiroshita Y. The tachykinin NK1 receptor antagonist GR205171 abolishes the retching activity of neurons comprising the central pattern generator for vomiting in dogs. Neurosci Res. 1999;33(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  29. Borison HL, Wang SC. Physiology and pharmacology of vomiting. Pharmacol Rev. 1953;5:193–230.

    CAS  PubMed  Google Scholar 

  30. Wang SC. Physiology and pharmacology of the brain stem. New York: Futura; 1980.

    Google Scholar 

  31. Grahame-Smith DG. The multiple causes of vomiting: is there a common mechanism? In: Davis CJ, Lake-Baker GV, Grahame-Smith DG, editors. Nausea and vomiting: mechanisms and treatment. Heidelberg: Springer; 1986. p. 1–8.

    Google Scholar 

  32. Brizzee KR. Mechanics of vomiting: a mini review. Can J Physiol Pharmacol. 1990;68:221–9.

    Article  CAS  PubMed  Google Scholar 

  33. Carpenter DO. Neural mechanisms of emesis. Can J Physiol Pharmacol. 1990;68:230–6.

    Article  CAS  PubMed  Google Scholar 

  34. Korte GE. The brainstem projection of the vestibular nerve in cat. J Comp Neurol. 1979;184(2):279–92.

    Article  CAS  PubMed  Google Scholar 

  35. Tayler DB, Bard P. Motion sickness. Physiol Rev. 1949;29:311–69.

    Article  Google Scholar 

  36. Money KE. Motion sickness. Physiol Rev. 1970;50:1–39.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson WH, Jonkees LBW. Motion sickness. In: Kornhuber HH, editor. Handbook of sensory physiology, vol. vi/2. Heidelberg: Springer; 1974. p. 389–411.

    Google Scholar 

  38. Reason JT, Brand JJ. Motion sickness. London: Academic Press; 1975.

    Google Scholar 

  39. Benson AJ. Motion sickness. In: Dix MR, Hood JD, editors. Vertigo. New York: Wiley; 1984. p. 391–426.

    Google Scholar 

  40. Stott JRR. Mechanisms and treatment of motion illness. In: Davis CJ, Lake-Baker GV, Grahame-Smith DG, editors. Nausea and vomiting: mechanisms and treatment. Heidelberg: Springer; 1986. p. 110–29.

    Chapter  Google Scholar 

  41. Homick JL. Space motion sickness. Acta Astronaut. 1979;6:1259–72.

    Article  CAS  PubMed  Google Scholar 

  42. Graybiel A. Space motion sickness; Skylab revisited. Aviat Space Environ Med. 1980;51:814–22.

    CAS  PubMed  Google Scholar 

  43. Talbot JM, Fisher KD. Space sickness. Physiologist. 1984;27:423–9.

    CAS  PubMed  Google Scholar 

  44. Leich RJ, Daroff RB. Space motion sickness; etiological hypotheses and a proposal for diagnostic clinical examination. Aviat Space Environ Med. 1985;56:469–73.

    Google Scholar 

  45. Oman CM, Lichtenberg BK, Money KE, McCoy RK. MIT/Canadian vestibular experiments on Spacelab-1. Mission: 4. Space motion sickness; symptoms, stimuli and predictability. Exp Brain Res. 1986;64:316–34.

    Article  CAS  PubMed  Google Scholar 

  46. Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF. Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med. 1988;59:1185–9.

    CAS  PubMed  Google Scholar 

  47. Reason JT. Motion sickness; a special case of sensory rearrangement. Adv Sci. 1970;26:386–93.

    CAS  PubMed  Google Scholar 

  48. Kuypers HGJM. Anatomy of the descending pathways. In: Brooks VB, editor. Handbook of physiology, Sect. 1, vol. 2, motor control. Bethesda: American Physiological Society; 1981. p. 597–666.

    Google Scholar 

  49. Massion J. Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol. 1992;38:35–56.

    Article  CAS  PubMed  Google Scholar 

  50. Jones GM. Posture. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principle of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 816–31.

    Google Scholar 

  51. Xu JX, Sun Y. Modeling and analysis of the falling process based on a five-link gait model. CIS. 2012;40 https://doi.org/10.2316/Journal.201.2012.1.201-2319.

  52. Okawa T, Tokita T, Shibata Y, Ogawa T, Miyata H. Stabilometry: significance of locus length per unit area (L/A) in patients with equilibrium disturbances. Equilib Res. 1995;54:283–93.

    Article  Google Scholar 

  53. Suzuki J, Matsunaga T, Tokumatsu K, Taguchi K, Watanabe Y. Q&A on stabilometry guidebook (1995). Equilib Res. 1996;55:64–77.

    Article  Google Scholar 

  54. Reason JT. Motion sickness adaptation. J Royal Soc Med. 1978;71:819–29.

    Article  CAS  Google Scholar 

  55. Stoffregen TA, Smart LJ. Postural instability precedes motion sickness. Brain Res Bull. 1998;47:437–48.

    Article  CAS  PubMed  Google Scholar 

  56. Kimura K, Osumi Y, Nagai Y. CRT display visibility in automobiles. Ergonomics. 1990;33(6):707–18.

    Article  CAS  PubMed  Google Scholar 

  57. Scharff LFV, Ahumada AJ Jr. Predicting the readability of transparent text. J Vision. 2002;2(9):653–66.

    Article  Google Scholar 

  58. Scharff LFV, Hill AL, Ahumada AJ Jr. Discriminability measures for predicting readability of text on textured backgrounds. Opt Express. 2000;6(4):81–91.

    Article  CAS  PubMed  Google Scholar 

  59. Miyao M, Ishihara S, Furuta M, Kondo T, Sakakibara H, Kashiwamata M, Yamada S. Do liquid crystal displays assure better readability than cathode-ray tubes? Nippon Eiseigaku Zasshi. 1993;48(3):746–51.

    Article  CAS  PubMed  Google Scholar 

  60. Miyao M, Hacisalihzade SS, Allen JS, Stark LW. Effects of VDT resolution on visual fatigue and readability. Ergonomics. 1989;32(6):603–14.

    Article  CAS  PubMed  Google Scholar 

  61. Omori M, Watanabe T, Takada H, Miyao M. Readability and characteristics of the mobile phones for elderly people. Behav Inform Technol. 2002;21:313–6.

    Article  Google Scholar 

  62. Hasegawa S, Sato K, Matsunuma S, Miyao M, Okamoto K. Multilingual disaster information system. AI & Soc. 2005;19(3):265–78.

    Article  Google Scholar 

  63. Lestienne F, Soechting J, Berthoz A. Postural readjustments induced by linear motion of visual scenes. Exp Brain Res. 1977;28:363–84.

    CAS  PubMed  Google Scholar 

  64. Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in Normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984;57:134–42.

    Article  CAS  PubMed  Google Scholar 

  65. Kirby RL, Price NA, Macleod DA. The influence of foot position on standing balance. J Biomech. 1987;20:423–7.

    Article  CAS  PubMed  Google Scholar 

  66. Norrē ME, Forrez G, Beckers A. Posturography measuring instability in vestibular dysfunction in the elderly. Age Ageing. 1987;16:89–93.

    Article  PubMed  Google Scholar 

  67. Hasan SS, Lichtenstein MJ, Shiavi RG. Effect of loss of balance on biomechanics platform measures of sway: influence of stance and a method for adjustment. J Biomech. 1990;23:783–9.

    Article  CAS  PubMed  Google Scholar 

  68. Takada H, Miyao M. Visual fatigue and motion sickness induced by 3D video clip. Forma. 2012;27:S67–76.

    Google Scholar 

  69. Oman C. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Suppl. 1982;392:1–44.

    CAS  PubMed  Google Scholar 

  70. Stoffregen TA, Smart LJ, Bardy BJ, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Human Percept Perform. 1999;25:1641–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Takada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takada, H. (2019). Stabilometry to Evaluate Severity of Motion Sickness on Displays. In: Takada, H., Miyao, M., Fateh, S. (eds) Stereopsis and Hygiene. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-1601-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1601-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1600-5

  • Online ISBN: 978-981-13-1601-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics