Skip to main content

Lactic Acid Bacteria and Biotoxins

  • Chapter
  • First Online:
Lactic Acid Bacteria in Foodborne Hazards Reduction

Abstract

Biological toxins are toxic chemicals from biological sources and have toxic effects or cause diseases and death. In order to reduce the biotoxins in food, many methods have been tried. The physical methods mainly include physical adsorption, strengthening the cleaning of raw materials, and clarification. The chemical methods mainly include additives or chemical fungicides to reduce the amount of biotoxins. However, these traditional strategies have many limitations, such as the change of flavor, the destruction of nutrition, and the influence of food functional properties. Lactic acid bacteria (LAB) have lots of potential applications as one of the biological antagonists. This kind of microorganisms has been extensively used in the fermented foods and the commensal microflora in the gut. LAB can generate some antagonistic compounds to inhibit the growth of pathogenic bacteria and restrain the undesirable spoilage microflora and then to reduce the biotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achuthan, Anju A., Raj Kumar Duary, Anupama Madathil, Harsh Panwar, Himanshu Kumar, Virender Kumar Batish, and Sunita Grover. 2012. Antioxidative potential of lactobacilli isolated from the gut of Indian people. Molecular Biology Reports 39 (8): 7887–7897. https://doi.org/10.1007/s11033-012-1633-9.

    Article  CAS  PubMed  Google Scholar 

  • Adebo, O.A., P.B. Njobeh, S. Gbashi, O.C. Nwinyi, and V. Mavumengwana. 2017. Review on microbial degradation of aflatoxins. Critical Reviews in Food Science and Nutrition 57 (15): 3208–3217.

    Article  CAS  PubMed  Google Scholar 

  • Ahlberg, Sara H., Vesa Joutsjoki, and Hannu J. Korhonen. 2015. Potential of lactic acid bacteria in aflatoxin risk mitigation. International journal of food microbiology 207: 87–102.

    Article  CAS  PubMed  Google Scholar 

  • Alberts, J.F., W.C.A. Gelderblom, A. Botha, and W.H. Van Zyl. 2009. Degradation of aflatoxin B 1 by fungal laccase enzymes. International journal of food microbiology 135 (1): 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Anene, Amira, Rafik Kalfat, Yves Chevalier, and Souhaira Hbaieb. 2016. Molecularly imprinted polymer-based materials as thin films on silica supports for efficient adsorption of Patulin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 497: 293–303. https://doi.org/10.1016/j.colsurfa.2016.03.005.

    Article  CAS  Google Scholar 

  • Assuncao, R., P. Alvito, C.R. Kleiveland, and T.E. Lea. 2016. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicology Letters 250–251: 47–56. https://doi.org/10.1016/j.toxlet.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  • Avsaroglu, M.D., F. Bozoglu, Hami Alpas, Alain Largeteau, and Gérard Demazeau. 2015. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Pressure Research 35 (2): 214–222.

    Article  CAS  Google Scholar 

  • Azevedo, Smfo, W.W. Carmichael, E.M. Jochimsen, K.L. Rinehart, S. Lau, G.R. Shaw, and G.K. Eaglesham. 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181: 441–446. https://doi.org/10.1016/s0300-483x(02)00491-2.

    Article  PubMed  Google Scholar 

  • Aziz, N.H., and L.A.A. Moussa. 2004. Reduction of fungi and mycotoxins formation in seeds by gamma-radiation. Journal of Food Safety 24 (2): 109–127.

    Article  CAS  Google Scholar 

  • Aziz, Nagy H., and B. Smyk. 2002. Influence of UV radiation and nitrosamines on the induction of mycotoxins synthesis by nontoxigenic moulds isolated from feed samples. Food/Nahrung 46 (2): 118–121.

    Article  CAS  PubMed  Google Scholar 

  • Barad, Shiri, Edward Sionov, and Dov Prusky. 2016. Role of patulin in post-harvest diseases. Fungal Biology Reviews 30 (1): 24–32. https://doi.org/10.1016/j.fbr.2016.02.001.

    Article  Google Scholar 

  • Barros, G.G., A.M. Torres, M.I. Rodriguez, and S.N. Chulze. 2006. Genetic diversity within Aspergillus flavus strains isolated from peanut-cropped soils in Argentina. Soil Biology and Biochemistry 38 (1): 145–152.

    Article  CAS  Google Scholar 

  • Belkacem-Hanfi, Nesrine, Imene Fhoula, Nabil Semmar, Amel Guesmi, Isabelle Perraud-Gaime, Hadda-Imen Ouzari, Abdellatif Boudabous, and Sevastianos Roussos. 2014. Lactic acid bacteria against post-harvest moulds and ochratoxin A isolated from stored wheat. Biological Control 76: 52–59. https://doi.org/10.1016/j.biocontrol.2014.05.001.

    Article  CAS  Google Scholar 

  • Bellver Soto, J., M. Fernandez-Franzon, M.J. Ruiz, and A. Juan-Garcia. 2014. Presence of ochratoxin A (OTA) mycotoxin in alcoholic drinks from southern European countries: Wine and beer. Journal of Agricultural and Food Chemistry 62 (31): 7643–7651. https://doi.org/10.1021/jf501737h.

    Article  CAS  PubMed  Google Scholar 

  • Blagojev, Nevena, Marija Škrinjar, Slavica Vesković-Moračanin, and Vladislava Šošo. 2012. Control of mould growth and mycotoxin production by lactic acid bacteria metabolites. Romanian Biotechnological Letters 17 (3): 7219–7226.

    CAS  Google Scholar 

  • Böhm, J., J. Grajewski, H. Asperger, et al. 2000. Study on biodegradation of some A-and B-trichothecenes and ochratoxin A by use of probiotic microorganisms. Mycotoxin Research 16: 70–74.

    Article  PubMed  Google Scholar 

  • Botha, N., M. van de Venter, T.G. Downing, E.G. Shephard, and M.M. Gehringer. 2004. The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon 43 (3): 251–254. https://doi.org/10.1016/j.toxicon.2003.11.026.

    Article  CAS  PubMed  Google Scholar 

  • Boudra, Hamid, Pierrette Le Bars, and Joseph Le Bars. 1995. Thermostability of Ochratoxin A in wheat under two moisture conditions. Applied and Environmental Microbiology 61 (3): 1156–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boussabbeh, M., I. Ben Salem, F. Belguesmi, H. Bacha, and S. Abid-Essefi. 2016. Tissue oxidative stress induced by patulin and protective effect of crocin. Neurotoxicology 53: 343–349. https://doi.org/10.1016/j.neuro.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  • Bovo, Fernanda, Larissa Tuanny Franco, Roice Eliana Rosim, and Carlos Augusto Fernandes de Oliveira. 2014. Ability of a Lactobacillus rhamnosus strain cultured in milk whey based medium to bind aflatoxin B1. Food Science and Technology (Campinas) 34 (3): 566–570.

    Article  Google Scholar 

  • Bren, Urban, F. Peter Guengerich, and Janez Mavri. 2007. Guanine alkylation by the potent carcinogen aflatoxin B1: Quantum chemical calculations. Chemical Research in Toxicology 20 (8): 1134–1140.

    Article  CAS  PubMed  Google Scholar 

  • Broberg, Anders, Karin Jacobsson, Katrin Ström, and Johan Schnürer. 2007. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology 73 (17): 5547–5552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castoria, R., Mannina, L., Duran-Patron, R., and Maffei, F. 2011. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. Journal of Agricultural and Food Chemistry 59(21):11571–11578. https://doi.org/10.1016/j.molcatb.2007.07.001. 10.1021/jf203098v.

    Article  CAS  Google Scholar 

  • Dalié, D.K.D., A.M. Deschamps, and F. Richard-Forget. 2010. Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control 21 (4): 370–380. https://doi.org/10.1016/j.foodcont.2009.07.011.

    Article  CAS  Google Scholar 

  • Das, Arijit, Sourav Bhattacharya, Muthusamy Palaniswamy, and Jayaraman Angayarkanni. 2014. Biodegradation of aflatoxin B1 in contaminated rice straw by Pleurotus ostreatus MTCC 142 and Pleurotus ostreatus GHBBF10 in the presence of metal salts and surfactants. World Journal of Microbiology and Biotechnology 30 (8): 2315–2324.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, R.M. 1998. The toxicology of microcystins. Toxicon 36 (7): 953–962. https://doi.org/10.1016/S0041-0101(97)00102-5.

    Article  CAS  PubMed  Google Scholar 

  • de Melo, F.T., I.M. de Oliveira, S. Greggio, J.C. Dacosta, T.N. Guecheva, J. Saffi, J.A. Henriques, and R.M. Rosa. 2012. DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food and Chemical Toxicology 50 (10): 3548–3555. https://doi.org/10.1016/j.fct.2011.12.022.

    Article  CAS  PubMed  Google Scholar 

  • Del Prete, V., H. Rodriguez, A.V. Carrascosa, B. de las Rivas, E. Garcia-Moruno, and R. Munoz. 2007. In vitro removal of ochratoxin A by wine lactic acid bacteria. Journal of Food Protection 70 (9): 2155–2160.

    Article  PubMed  Google Scholar 

  • Delcour, Jean, Thierry Ferain, Marie Deghorain, Emmanuelle Palumbo, and Pascal Hols. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. In Lactic acid bacteria: Genetics, metabolism and applications, 159–184. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ding, W.X., and C.N. Ong. 2003. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. Fems Microbiology Letters 220 (1): 1–7. https://doi.org/10.1016/S0378-1097(03)00100-9.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X., W. Jiang, C. Li, N. Ma, Y. Xu, and X. Meng. 2015. Patulin biodegradation by marine yeast Kodameae ohmeri. Food Additives & Contaminants: Part A Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (3): 352–360. https://doi.org/10.1080/19440049.2015.1007090.

    Article  CAS  Google Scholar 

  • Duarte, S.C., C.M. Lino, and A. Pena. 2012. Food safety implications of ochratoxin A in animal-derived food products. The Veterinary Journal 192 (3): 286–292. https://doi.org/10.1016/j.tvjl.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  • El-Nezami, Hani, Pasi Kankaanpää, Seppo Salminen, and Jorma Ahokas. 1998. Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. Journal of Food Protection® 61 (4): 466–468.

    Article  CAS  Google Scholar 

  • El-Nezami, Hani, Hannu Mykkänen, Pasi Kankaanpää, Seppo Salminen, and Jorma Ahokas. 2000. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. Journal of Food Protection® 63 (4): 549–552.

    Article  CAS  Google Scholar 

  • El-Nezami, H., N. Polychronaki, S. Salminen, and H. Mykkanen. 2002. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and Its derivative-zearalenol. Applied and Environmental Microbiology 68 (7): 3545–3549. https://doi.org/10.1128/aem.68.7.3545-3549.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Nezami, H., N. Polychronaki, Y.K. Lee, C. Haskard, R. Juvonen, S. Salminen, and H. Mykkanen. 2004. Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. Journal of Agricultural and Food Chemistry 52 (14): 4577–4581. https://doi.org/10.1021/jf049924m.

    Article  CAS  PubMed  Google Scholar 

  • Elsanhoty, Rafaat M., Samir Ahmed Salam, Mohamed Fawzy Ramadan, and Farid H. Badr. 2014. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 43: 129–134. https://doi.org/10.1016/j.foodcont.2014.03.002.

    Article  CAS  Google Scholar 

  • El-Shiekh, Hussein H., Hesham M. Mahdy, and Mahmoud M. El-Aaser. 2007. Bioremediation of aflatoxins by some reference fungal strains. Polish Journal of Microbiology 56 (3): 215.

    CAS  PubMed  Google Scholar 

  • Eshelli, Manal, Linda Harvey, RuAngelie Edrada-Ebel, and Brian McNeil. 2015. Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0. Toxins 7 (2): 439–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawell, J.K., R.E. Mitchell, D.J. Everett, and R.E. Hill. 1999. The toxicity of cyanobacterial toxins in the mouse: I Microcystin-LR. Human & Experimental Toxicology 18 (3): 162–167. https://doi.org/10.1191/096032799678839842.

    Article  CAS  Google Scholar 

  • Ferenczi, S., M. Cserhati, C. Krifaton, S. Szoboszlay, J. Kukolya, Z. Szoke, B. Koszegi, M. Albert, T. Barna, M. Mezes, K.J. Kovacs, and B. Kriszt. 2014. A new ochratoxin A biodegradation strategy using Cupriavidus basilensis Or16 strain. PLoS One 9 (10): e109817. https://doi.org/10.1371/journal.pone.0109817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, W.J., S. Altheimer, V. Cattori, P.J. Meier, D.R. Dietrich, and B. Hagenbuch. 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicology and Applied Pharmacology 203 (3): 257–263. https://doi.org/10.1016/j.taap.2004.08.012.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs, S., G. Sontag, R. Stidl, V. Ehrlich, M. Kundi, and S. Knasmuller. 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology 46 (4): 1398–1407. https://doi.org/10.1016/j.fct.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  • Gehringer, M.M., E.G. Shephard, T.G. Downing, C. Wiegand, and B.A. Neilan. 2004. An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. The International Journal of Biochemistry & Cell Biology 36 (5): 931–941. https://doi.org/10.1016/j.biocel.2003.10.012.

    Article  CAS  Google Scholar 

  • Gerbaldo, Gisela A., Carla Barberis, Liliana Pascual, Ana Dalcero, and Lucila Barberis. 2012. Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiology Letters 332 (1): 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Glaser, N., and H. Stopper. 2012. Patulin: Mechanism of genotoxicity. Food and Chemical Toxicology 50 (5): 1796–1801. https://doi.org/10.1016/j.fct.2012.02.096.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, Bruna Leonel, Roice Eliana Rosim, Carlos Augusto Fernandes de Oliveira, and Carlos Humberto Corassin. 2015. The in vitro ability of different Saccharomyces cerevisiae–Based products to bind aflatoxin B 1. Food Control 47: 298–300.

    Article  CAS  Google Scholar 

  • Gourama, Hassan, and Lloyd B. Bullerman. 1995. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. Journal of Food Protection® 58 (11): 1249–1256.

    Article  CAS  Google Scholar 

  • Gratz, S., H. Mykkänen, A.C. Ouwehand, R. Juvonen, S. Salminen, and H. El-Nezami. 2004. Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Applied and Environmental Microbiology 70 (10): 6306–6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratz, S., Q.K. Wu, H. El-Nezami, R.O. Juvonen, H. Mykkänen, and P.C. Turner. 2007. Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells. Applied and Environmental Microbiology 73 (12): 3958–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grollman, A.P., and B. Jelakovic. 2007. Role of environmental toxins in endemic (Balkan) nephropathy. October 2006, Zagreb, Croatia. Journal of the American Society of Nephrology 18 (11): 2817–2823. https://doi.org/10.1681/ASN.2007050537.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Y. Yuan, T. Yue, S. Hatab, and Z. Wang. 2012. Binding mechanism of patulin to heat-treated yeast cell. Letters in Applied Microbiology 55 (6): 453–459. https://doi.org/10.1111/j.1472-765x.2012.03314.x.

    Article  CAS  PubMed  Google Scholar 

  • Guzman, R.E., and P.F. Solter. 2002. Characterization of sublethal microcystin-LR exposure in mice. Veterinary Pathology 39 (1): 17–26. https://doi.org/10.1354/Vp.39-1-17.

    Article  CAS  PubMed  Google Scholar 

  • Halttunen, T., M.C. Collado, H. El-Nezami, J. Meriluoto, and S. Salminen. 2008. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Letters in Applied Microbiology 46 (2): 160–165. https://doi.org/10.1111/j.1472-765X.2007.02276.x.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Heying, Ting Zhou, Tatiana Koutchma, Fan Wu, and Keith Warriner. 2016. High hydrostatic pressure assisted degradation of patulin in fruit and vegetable juice blends. Food Control 62: 237–242. https://doi.org/10.1016/j.foodcont.2015.10.042.

    Article  CAS  Google Scholar 

  • Haskard, Carolyn, Charlotte Binnion, and Jorma Ahokas. 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chemico-Biological Interactions 128 (1): 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Haskard, C.A., H.S. El-Nezami, P.E. Kankaanpaa, S. Salminen, and J.T. Ahokas. 2001. Surface binding of aflatoxin B(1) by lactic acid bacteria. Applied and Environmental Microbiology 67 (7): 3086–3091. https://doi.org/10.1128/AEM.67.7.3086-3091.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatab, S., T. Yue, and O. Mohamad. 2012a. Reduction of patulin in aqueous solution by lactic acid bacteria. Journal of Food Science 77 (4): M238–M241. https://doi.org/10.1111/j.1750-3841.2011.02615.x.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2012b. Removal of patulin from apple juice using inactivated lactic acid bacteria. Journal of Applied Microbiology 112 (5): 892–899 https://doi.org/10.1111/j.1365-2672.2012.05279.x.

    Article  CAS  PubMed  Google Scholar 

  • Hathout, Amal S., and Soher E. Aly. 2014. Biological detoxification of mycotoxins: a review. Annals of microbiology 64 (3): 905–919.

    Article  CAS  Google Scholar 

  • Hathout, Amal S., Sherif R. Mohamed, Aziza A. El-Nekeety, Nabila S. Hassan, Soher E. Aly, and Mosaad A. Abdel-Wahhab. 2011. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58 (2): 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Hawar, Sumaiya, William Vevers, Sahar Karieb, Batool K. Ali, Richard Billington, and Jane Beal. 2013. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum. Food Control 34 (2): 502–508. https://doi.org/10.1016/j.foodcont.2013.05.023.

    Article  CAS  Google Scholar 

  • Hell, K., C. Mutegi, and P. Fandohan. 2010. Aflatoxin control and prevention strategies in maize for Sub-Saharan Africa. Julius-Kühn-Archiv 425: 534.

    Google Scholar 

  • Hernandez-Mendoza, A., H.S. Garcia, and J.L. Steele. 2009a. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B 1. Food and Chemical Toxicology 47 (6): 1064–1068.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Mendoza, A., D. Guzman-de-Peña, and H.S. Garcia. 2009b. Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. Journal of Applied Microbiology 107 (2): 395–403.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Mendoza, Adrián, Doralinda Guzman-De-Peña, Aarón Fernando González-Córdova, Belinda Vallejo-Córdoba, and Hugo Sergio Garcia. 2010. In vivo assessment of the potential protective effect of Lactobacillus casei Shirota against aflatoxin B1. Dairy Science & Technology 90 (6): 729–740.

    Article  CAS  Google Scholar 

  • Heussner, A.H., and L.E. Bingle. 2015. Comparative ochratoxin toxicity: A review of the available data. Toxins (Basel) 7 (10): 4253–4282. https://doi.org/10.3390/toxins7104253.

    Article  CAS  Google Scholar 

  • Hmaissia Khlifa, K., R. Ghali, C. Mazigh, Z. Aouni, S. Machgoul, and A. Hedhili. 2012. Ochratoxin A levels in human serum and foods from nephropathy patients in Tunisia: Where are you now? Experimental and Toxicologic Pathology 64 (5): 509–512. https://doi.org/10.1016/j.etp.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, S.Z., M.R. Asi, U. Hanif, M. Zuber, and S. Jinap. 2016. The presence of aflatoxins and ochratoxin A in rice and rice products; and evaluation of dietary intake. Food Chemistry 210: 135–140. https://doi.org/10.1016/j.foodchem.2016.04.104.

    Article  CAS  PubMed  Google Scholar 

  • Jalili, M., S. Jinap, and A. Noranizan. 2010. Effect of gamma radiation on reduction of mycotoxins in black pepper. Food Control 21 (10): 1388–1393. https://doi.org/10.1016/j.foodcont.2010.04.012.

    Article  CAS  Google Scholar 

  • Jayaraj, R., U. Deb, A.S. Bhaskar, G.B. Prasad, and P.V. Rao. 2007. Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in mice. Environmental Toxicology 22 (5): 472–479. https://doi.org/10.1002/tox.20283.

    Article  CAS  PubMed  Google Scholar 

  • Jindal, N., S.K. Mahipal, and N.K. Mahajan. 1994. Toxicity of aflatoxin B 1 in broiler chicks and its reduction by activated charcoal. Research in Veterinary Science 56 (1): 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Kabak, Bulent, Alan D.W. Dobson, and Işil Var. 2006. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Critical Reviews in Food Science and Nutrition 46 (8): 593–619.

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan, S., Dionysios D. Dionysiou, Adam F. Lee, S. Suvitha, P. Maharaja, Karen Wilson, and G. Sekaran. 2016. Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catalysis Science & Technology 6 (2): 530–544.

    Article  CAS  Google Scholar 

  • Khoury, El, Ali Atoui André, and Joseph Yaghi. 2011. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control 22 (10): 1695–1699.

    Article  CAS  Google Scholar 

  • Kokkinidou, S., J.D. Floros, and L.F. LaBorde. 2014. Kinetics of the thermal degradation of patulin in the presence of ascorbic acid. Journal of Food Science 79 (1): T108–T114. https://doi.org/10.1111/1750-3841.12316.

    Article  CAS  PubMed  Google Scholar 

  • Kolosova, A., and J. Stroka. 2011. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin Journal 4 (3): 225–256.

    Article  CAS  Google Scholar 

  • Koszegi, T., and M. Poor. 2016. Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins (Basel) 8 (4): 111. https://doi.org/10.3390/toxins8040111.

    Article  CAS  Google Scholar 

  • Laitila, A., H.-L. Alakomi, L. Raaska, T. Mattila-Sandholm, and A. Haikara. 2002. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. Journal of Applied Microbiology 93 (4): 566–576.

    Article  CAS  PubMed  Google Scholar 

  • Lei, L.M., and L.R. Song. 2005. [Acute toxicity of microcystin-LR in BALB/c mice]. Di Yi Jun Yi Da Xue Xue Bao 25 (5): 565–6, 572.

    Google Scholar 

  • Lin, M.Y., and C.L. Yen. 1999. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry 47 (4): 1460–1466. https://doi.org/10.1021/jf981149l.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B.H., T.S. Wu, F.Y. Yu, and C.H. Wang. 2006. Mycotoxin patulin activates the p38 kinase and JNK signaling pathways in human embryonic kidney cells. Toxicological Sciences 89 (2): 423–430. https://doi.org/10.1093/toxsci/kfj049.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B.H., T.S. Wu, F.Y. Yu, and C.C. Su. 2007. Induction of oxidative stress response by the mycotoxin patulin in mammalian cells. Toxicological Sciences 95 (2): 340–347. https://doi.org/10.1093/toxsci/kfl156.

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh, R.W., K.N. Dalby, D.G. Campbell, P.T.W. Cohen, P. Cohen, and C. Mackintosh. 1995. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase-1. Febs Letters 371 (3): 236–240. https://doi.org/10.1016/0014-5793(95)00888-g.

    Article  CAS  PubMed  Google Scholar 

  • Maeba, Hide, Yuji Takamoto, M. Inoru Kamimura, and T. Oshiyuki Miura. 1988. Destruction and detoxification of aflatoxins with ozone. Journal of Food Science 53 (2): 667–668.

    Article  CAS  Google Scholar 

  • Malir, F., V. Ostry, A. Pfohl-Leszkowicz, J. Malir, and J. Toman. 2016. Ochratoxin A: 50 years of research. Toxins (Basel) 8 (7). https://doi.org/10.3390/toxins8070191.

    Article  PubMed Central  CAS  Google Scholar 

  • Martins, Nathan Dias, João Sarkis Yunes, Diana Amaral Monteiro, Francisco Tadeu Rantin, and Ana Lúcia Kalinin. 2017. Microcystin-LR leads to oxidative damage and alterations in antioxidant defense system in liver and gills of Brycon amazonicus (SPIX & AGASSIZ, 1829). Toxicon 139: 109–116.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, S.P. 2013. Microbial detoxification of mycotoxins. Journal of Chemical Ecology 39 (7): 907–918. https://doi.org/10.1007/s10886-013-0321-0.

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Albores, A., J.C. Del Río-García, and E. Moreno-Martínez. 2007. Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Animal Feed Science and Technology 135 (3–4): 249–262. https://doi.org/10.1016/j.anifeedsci.2006.07.009.

    Article  CAS  Google Scholar 

  • Mishra, H.N., and Chitrangada Das. 2003. A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition 43: 245.

    Article  CAS  PubMed  Google Scholar 

  • Molnar, O., G. Schatzmayr, E. Fuchs, and H. Prillinger. 2004. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Systematic and Applied Microbiology 27 (6): 661–671. https://doi.org/10.1078/0723202042369947.

    Article  CAS  PubMed  Google Scholar 

  • Morales, Héctor, Sonia Marín, Antonio J. Ramos, and Vicente Sanchis. 2010. Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control 21 (7): 953–962. https://doi.org/10.1016/j.foodcont.2009.12.016.

    Article  CAS  Google Scholar 

  • Moss, M.O., and M.T. Long. 2002. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Additives and Contaminants 19 (4): 387–399. https://doi.org/10.1080/02652030110091163.

    Article  CAS  PubMed  Google Scholar 

  • Ndagano, Dora, Thibaut Lamoureux, Carine Dortu, Sophie Vandermoten, and Philippe Thonart. 2011. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of Food Science 76 (6): M305–M311.

    Article  CAS  PubMed  Google Scholar 

  • Nishiwakimatsushima, R., T. Ohta, S. Nishiwaki, M. Suganuma, K. Kohyama, T. Ishikawa, W.W. Carmichael, and H. Fujiki. 1992. Liver-tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of Cancer Research and Clinical Oncology 118 (6): 420–424. https://doi.org/10.1007/bf01629424.

    Article  CAS  Google Scholar 

  • Nybom, Sonja M.K., M. Carmen Collado, Ingrid S. Surono, Seppo J. Salminen, and Jussi A.O. Meriluoto. 2008. Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk. Journal of Agricultural and Food Chemistry 56 (10): 3714–3720. https://doi.org/10.1021/jf071835x.

    Article  CAS  PubMed  Google Scholar 

  • Nybom, S.M., D. Dziga, J.E. Heikkila, T.P. Kull, S.J. Salminen, and J.A. Meriluoto. 2012. Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon 59 (1): 171–181. https://doi.org/10.1016/j.toxicon.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Oluwafemi, Flora, Manjula Kumar, Ranajit Bandyopadhyay, Tope Ogunbanwo, and Kayode B. Ayanwande. 2010. Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. Toxin Reviews 29 (3-4): 115–122.

    Article  CAS  Google Scholar 

  • Onilude, A.A., O.E. Fagade, M.M. Bello, and I.F. Fadahunsi. 2005. Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria isolates from indigenously fermented cereal gruels. African Journal of Biotechnology 4 (12).

    Google Scholar 

  • Park, Douglas L. 2002. Effect of processing on aflatoxin. In Mycotoxins and food safety, 173–179. Boston: Springer.

    Chapter  Google Scholar 

  • Peltonen, K., H. El-Nezami, C. Haskard, J. Ahokas, and S. Salminen. 2001. Aflatoxin B 1 binding by dairy strains of lactic acid bacteria and bifidobacteria. Journal of Dairy Science 84 (10): 2152–2156.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Chunhong, Ding Yang, Fengping An, Li Wang, Shuying Li, Ying Nie, Linyan Zhou, Yaru Li, Changgang Wang, and Shurong Li. 2015. Degradation of ochratoxin A in aqueous solutions by electron beam irradiation. Journal of Radioanalytical and Nuclear Chemistry 306 (1): 39–46. https://doi.org/10.1007/s10967-015-4086-5.

    Article  CAS  Google Scholar 

  • Peng, Xiaoning, Bingjie Liu, Wei Chen, Xiaohong Li, Qianrui Wang, Xianghong Meng, and Dongfeng Wang. 2016. Effective biosorption of patulin from apple juice by cross-linked xanthated chitosan resin. Food Control 63: 140–146. https://doi.org/10.1016/j.foodcont.2015.11.039.

    Article  CAS  Google Scholar 

  • Pepeljnjak, S., and M.S. Klaric. 2010. Suspects in etiology of endemic nephropathy: Aristolochic acid versus mycotoxins. Toxins (Basel) 2 (6): 1414–1427. https://doi.org/10.3390/toxins2061414.

    Article  CAS  Google Scholar 

  • Petzinger, E., and K. Ziegler. 2000. Ochratoxin A from a toxicological perspective. Journal of Veterinary Pharmacology and Therapeutics 23 (2): 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Pierides, Maritsa, Hani El-Nezami, Karita Peltonen, Seppo Salminen, and Jorma Ahokas. 2000. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. Journal of Food Protection® 63 (5): 645–650.

    Article  CAS  Google Scholar 

  • Piotrowska, M. 2014. The adsorption of ochratoxin a by lactobacillus species. Toxins (Basel) 6 (9): 2826–2839. https://doi.org/10.3390/toxins6092826.

    Article  CAS  Google Scholar 

  • Piotrowska, M., and Z. Zakowska. 2005. The elimination of ochratoxin A by lactic acid bacteria strains. Polish Journal of Microbiology 54 (4): 279–286.

    CAS  PubMed  Google Scholar 

  • Pizzolitto, R.P., M.A. Salvano, and A.M. Dalcero. 2012. Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. International Journal of Food Science & Technology 156 (3): 214–221. https://doi.org/10.1016/j.ijfoodmicro.2012.03.024.

    Article  CAS  Google Scholar 

  • Prieto, A.I., A. Jos, S. Pichardo, I. Moreno, and A.M. Camean. 2008. Protective role of vitamin E on the microcystin-induced oxidative stress in tilapia fish (Oreochromis niloticus). Environmental Toxicology and Chemistry 27 (5): 1152–1159. https://doi.org/10.1897/07-496.1.

    Article  CAS  PubMed  Google Scholar 

  • Prior, R.L., X.L. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53 (10): 4290–4302. https://doi.org/10.1021/jf0502698.

    Article  CAS  PubMed  Google Scholar 

  • Puel, O., P. Galtier, and I.P. Oswald. 2010. Biosynthesis and toxicological effects of patulin. Toxins (Basel) 2 (4): 613–631. https://doi.org/10.3390/toxins2040613.

    Article  CAS  Google Scholar 

  • Raju, M.V.L.N., and G. Devegowda. 2000. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). British Poultry Science 41 (5): 640–650.

    Article  CAS  PubMed  Google Scholar 

  • Rawal, Sumit, Ji Eun Kim, and Roger Coulombe. 2010. Aflatoxin B 1 in poultry: toxicology, metabolism and prevention. Research in Veterinary Science 89 (3): 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Ricelli, A., F. Baruzzi, M. Solfrizzo, M. Morea, and F.P. Fanizzi. 2007. Biotransformation of patulin by Gluconobacter oxydans. Applied and Environmental Microbiology 73 (3): 785–792. https://doi.org/10.1128/AEM.02032-06.

    Article  CAS  PubMed  Google Scholar 

  • Richard, John L. 2007. Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology 119 (1): 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Richard, J.L., G.A. Payne, A.E. Desjardins, C. Maragos, W.P. Norred, and J.J. Pestka. 2003. Mycotoxins: Risks in plant, animal and human systems. CAST Task Force Report 139: 101–103.

    Google Scholar 

  • Rodriguez, H., I. Reveron, F. Doria, A. Costantini, B. De Las Rivas, R. Munoz, and E. Garcia-Moruno. 2011. Degradation of ochratoxin a by Brevibacterium species. Journal of Agricultural and Food Chemistry 59 (19): 10755–10760. https://doi.org/10.1021/jf203061p.

    Article  CAS  PubMed  Google Scholar 

  • Russo, P., V. Capozzi, G. Spano, M.R. Corbo, M. Sinigaglia, and A. Bevilacqua. 2016. Metabolites of microbial origin with an impact on health: Ochratoxin A and biogenic amines. Frontiers in Microbiology 7: 482. https://doi.org/10.3389/fmicb.2016.00482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rustom, Ismail Y.S. 1997. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chemistry 59 (1): 57–67.

    Article  CAS  Google Scholar 

  • Samarajeewa, U., A.C. Sen, M.D. Cohen, and C.I. Wei. 1990. Detoxification of aflatoxins in foods and feeds by physical and chemical methods. Journal of Food Protection® 53 (6): 489–501.

    Article  CAS  Google Scholar 

  • Samuel, S. Melvin, Visenuo Aiko, Pragyanshree Panda, and Alka Mehta. 2013. Aflatoxin B-1 occurrence, biosynthesis and its degradation. Journal of Pure and Applied Microbiology 7 (2): 965–971.

    CAS  Google Scholar 

  • Samuel, Melvin S., Akella Sivaramakrishna, and Alka Mehta. 2014. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. International Biodeterioration & Biodegradation 86: 202–209.

    Article  CAS  Google Scholar 

  • San Martin, M.F., G.V. Barbosa-Canovas, and B.G. Swanson. 2002. Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 42 (6): 627–645. https://doi.org/10.1080/20024091054274.

    Article  CAS  PubMed  Google Scholar 

  • Sangare, Lancine, Yueju Zhao, Yawa Minnie Elodie Folly, Jinghua Chang, Jinhan Li, Jonathan Nimal Selvaraj, Fuguo Xing, Zhou Lu, Yan Wang, and Liu Yang. 2014. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins 6 (10): 3028–3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sant’Ana, Anderson de Souza, Amauri Rosenthal, and Pilar Rodriguez de Massaguer. 2008. The fate of patulin in apple juice processing: A review. Food Research International 41 (5): 441–453. https://doi.org/10.1016/j.foodres.2008.03.001.

    Article  CAS  Google Scholar 

  • Savino, M., P. Limosani, and E. Garcia-Moruno. 2007. Reduction of ochratoxin A contamination in red wines by oak wood fragments. American Journal of Enology and Viticulture 58 (1): 97–101.

    CAS  Google Scholar 

  • Schatzmayr, G., D. Heidler, E. Fuchs, S. Nitsch, M. Mohnl, M. Taubel, A.P. Loibner, R. Braun, and E.M. Binder. 2003. Investigation of different yeast strains for the detoxification of ochratoxin A. Mycotoxin Research 19 (2): 124–128. https://doi.org/10.1007/BF02942950.

    Article  CAS  PubMed  Google Scholar 

  • Schnürer, Johan, and Jesper Magnusson. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology 16 (1-3): 70–78. https://doi.org/10.1016/j.tifs.2004.02.014.

    Article  CAS  Google Scholar 

  • Scott, P.M. 1984. Effects of food processing on mycotoxins. Journal of Food Protection® 47 (6): 489–499.

    Article  CAS  Google Scholar 

  • Serrano-Niño, J.C., A. Cavazos-Garduño, F. Cantú-Cornelio, A.F. González-Córdova, B. Vallejo-Córdoba, A. Hernández-Mendoza, and H.S. García. 2015. In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT – Food Science and Technology 64 (2): 1334–1341. https://doi.org/10.1016/j.lwt.2015.07.015.

    Article  CAS  Google Scholar 

  • Shcherbakova, Larisa, Natalia Statsyuk, Oleg Mikityuk, Tatyana Nazarova, and Vitaly Dzhavakhiya. 2015. Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus. Jundishapur Journal of Microbiology 8 (1): e24324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, P.P., S.W. Zhao, W.J. Zheng, Z.C. Hua, Q. Shi, and Z.T. Liu. 2003. Effects of cyanobacteria bloom extract on some parameters of immune function in mice. Toxicology Letters 143 (1): 27–36. https://doi.org/10.1016/S0378-4274(03)00110-3.

    Article  CAS  PubMed  Google Scholar 

  • Shetty, Prathapkumar Halady, and Lene Jespersen. 2006. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science & Technology 17 (2): 48–55.

    Article  CAS  Google Scholar 

  • Shetty, Prathapkumar Halady, Benedicte Hald, and Lene Jespersen. 2007. Surface binding of aflatoxin B 1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology 113 (1): 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Soriano, J.M., L. Gonzalez, and A.I. Catala. 2005. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research 44 (6): 345–356.

    Article  CAS  PubMed  Google Scholar 

  • Stander, Maria A., Uwe T. Bornscheuer, and Pieter S. Steyn. 2000. Screening of commercial hydrolases for the degradation of ochratoxin A. Journal of Agricultural and Food Chemistry 48 (11): 5736–5738.

    Article  CAS  PubMed  Google Scholar 

  • Streit, E., G. Schatzmayr, P. Tassis, E. Tzika, D. Marin, I. Taranu, C. Tabuc, A. Nicolau, I. Aprodu, O. Puel, and I.P. Oswald. 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed–focus on Europe. Toxins (Basel) 4 (10): 788–809. https://doi.org/10.3390/toxins4100788.

    Article  CAS  Google Scholar 

  • Strosnider, Heather, Eduardo Azziz-Baumgartner, Marianne Banziger, Ramesh V. Bhat, Robert Breiman, Marie-Noel Brune, Kevin DeCock, Abby Dilley, John Groopman, and Kerstin Hell. 2006. Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environmental Health Perspectives: 1898–1903.

    Google Scholar 

  • Sun, X., L. Mi, J. Liu, L. Song, F.L. Chung, and N. Gan. 2011. Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice. Toxicology and Applied Pharmacology 255 (1): 9–17. https://doi.org/10.1016/j.taap.2011.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Lv-Hui, Ni-Ya Zhang, Ran-Ran Sun, Xin Gao, Gu Changqin, Christopher Steven Krumm, and De-Sheng Qi. 2015. A novel strain of Cellulosimicrobium funkei can biologically detoxify aflatoxin B1 in ducklings. Microbial Biotechnology 8 (3): 490–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surono, I.S., M.C. Collado, S. Salminen, and J. Meriluoto. 2008. Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food and Chemical Toxicology 46 (2): 502–507. https://doi.org/10.1016/j.fct.2007.08.017.

    Article  CAS  PubMed  Google Scholar 

  • Teniola, O.D., P.A. Addo, I.M. Brost, P. Färber, K.-D. Jany, J.F. Alberts, W.H. Van Zyl, P.S. Steyn, and W.H. Holzapfel. 2005. Degradation of aflatoxin B 1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556 T. International Journal of Food Microbiology 105 (2): 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Terzi, Valeria, Tumino Giorgio, A. Michele Stanca, and Caterina Morcia. 2014. Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species. Journal of Cereal Science 59 (3): 284–293.

    Article  CAS  Google Scholar 

  • Toivola, D.M., J.E. Eriksson, and D.L. Brautigan. 1994. Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. FEBS Letters 344 (2-3): 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Topcu, A., T. Bulat, R. Wishah, and I.H. Boyaci. 2010. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. International Journal of Food Microbiology 139 (3): 202–205. https://doi.org/10.1016/j.ijfoodmicro.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  • Turan, Eylem, and Ferat Şahin. 2016. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors and Actuators B: Chemical 227: 668–676. https://doi.org/10.1016/j.snb.2015.12.087.

    Article  CAS  Google Scholar 

  • Turbic, A., J.T. Ahokas, and C.A. Haskard. 2002. Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Additives & Contaminants 19 (2): 144–152. https://doi.org/10.1080/02652030110070067.

    Article  CAS  Google Scholar 

  • Valerio, Francesca, Paola Lavermicocca, Michelangelo Pascale, and Angelo Visconti. 2004. Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters 233 (2): 289–295.

    Article  CAS  PubMed  Google Scholar 

  • Valerio, Francesca, Mara Favilla, Palmira De Bellis, Angelo Sisto, Silvia de Candia, and Paola Lavermicocca. 2009. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology 32 (6): 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Vanne, L., T. Kleemola, and A. Haikara. 2001. Screening of the antifungal effect of lactic acid bacteria against toxigenic Penicillium and Aspergillus strains. BMS international symposium on bioactive fungal metabolites–impact and exploitation, University of Wales, Swansea, Wales.

    Google Scholar 

  • Wang, L., Z. Wang, Y. Yuan, R. Cai, C. Niu, and T. Yue. 2015a. Identification of key factors involved in the biosorption of patulin by inactivated lactic acid bacteria (LAB) cells. PLoS One 10 (11): e0143431. https://doi.org/10.1371/journal.pone.0143431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Ling, Tianli Yue, Yahong Yuan, Zhouli Wang, Mengqi Ye, and Rui Cai. 2015b. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 50: 104–110. https://doi.org/10.1016/j.foodcont.2014.08.041.

    Article  CAS  Google Scholar 

  • Wang, Y., J.Z. Zhou, X.D. Xia, Y.C. Zhao, and W.L. Shao. 2016. Probiotic potential of Lactobacillus paracasei FM-LP-4 isolated from Xinjiang camel milk yoghurt. International Dairy Journal 62: 28–34. https://doi.org/10.1016/j.idairyj.2016.07.001.

    Article  CAS  Google Scholar 

  • Williams, Jonathan H., Timothy D. Phillips, Pauline E. Jolly, Jonathan K. Stiles, Curtis M. Jolly, and Deepak Aggarwal. 2004. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition 80 (5): 1106–1122.

    Article  CAS  PubMed  Google Scholar 

  • Woo, C.S., and H. El-Nezami. 2016. Maternal-fetal cancer risk assessment of Ochratoxin A during pregnancy. Toxins (Basel) 8 (4): 87. https://doi.org/10.3390/toxins8040087.

    Article  CAS  Google Scholar 

  • Wu, Qinghua, Alena Jezkova, Zonghui Yuan, Lucie Pavlikova, Vlastimil Dohnal, and Kamil Kuca. 2009. Biological degradation of aflatoxins. Drug Metabolism Reviews 41 (1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Qinghua, Vlastimil Dohnal, Lingli Huang, Kamil Kuca, Wang Xu, Guyue Chen, and Zonghui Yuan. 2011. Metabolic pathways of Ochratoxin A. Current Drug Metabolism 12 (1): 1–10. https://doi.org/10.2174/138920011794520026.

    Article  PubMed  Google Scholar 

  • Wu, J., S. Shao, F. Zhou, S. Wen, F. Chen, and X. Han. 2014. Reproductive toxicity on female mice induced by microcystin-LR. Environmental Toxicology and Pharmacology 37 (1): 1–6. https://doi.org/10.1016/j.etap.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Yuan-Zhen, Fu-Pu Lu, Hai-Lan Jiang, Cui-Ping Tan, Dong-Sheng Yao, Chun-Fang Xie, and Da-Ling Liu. 2015. The furofuran-ring selectivity, hydrogen peroxide-production and low K m value are the three elements for highly effective detoxification of aflatoxin oxidase. Food and Chemical Toxicology 76: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., W.Q. Shu, Z.Q. Qiu, J.A. Chen, Q. Zhao, and J. Cao. 2007. Protective effects of green tea polyphenols against subacute hepatotoxicity induced by microcystin-LR in mice. Environmental Toxicology and Pharmacology 24 (2): 140–148. https://doi.org/10.1016/j.etap.2007.04.004.

    Article  CAS  PubMed  Google Scholar 

  • Yang, E.J., and H.C. Chang. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology 139 (1): 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Q. Li, and G.Z. Fang. 2016. Preparation and evaluation of novel surface molecularly imprinted polymers by sol–gel process for online solid-phase extraction coupled with high performance liquid. RSC Advances 6: 54510–54517. https://doi.org/10.1039/C6RA08736A10.1039/c6ra08736a.

    Article  CAS  Google Scholar 

  • Yehia, Ramy Sayed. 2014. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Brazilian Journal of Microbiology 45 (1): 127–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., X. Wang, S. Hatab, Z. Wang, Y. Wang, Y. Luo, and T. Yue. 2014. Patulin reduction in apple juice by inactivated Alicyclobacillus spp. Letters in Applied Microbiology 59 (6): 604–609. https://doi.org/10.1111/lam.12315.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Z. Zheng, J. Luan, G. Yang, W. Song, Y. Zhong, and Z. Xie. 2007. Degradation of hexachlorobenzene by electron beam irradiation. Journal of Hazardous Materials 142 (1-2): 431–436. https://doi.org/10.1016/j.jhazmat.2006.08.035.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Shu-wen, L. Jia-ping, Bilige Menghe, Liu Lu, and Hu. Xian-bao. 2010a. Antioxidative activity of Lactobacillus casei subsp. casei SY13 on ageing model mice. Scientia Agricultura Sinica 43 (10).

    Google Scholar 

  • Zhang, Yong, Du Ruiting, Lifeng Wang, and Heping Zhang. 2010b. The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. European Food Research and Technology 231 (1): 151–158. https://doi.org/10.1007/s00217-010-1255-1.

    Article  CAS  Google Scholar 

  • Zhang, Z., L. Yu, L. Xu, X. Hu, P. Li, Q. Zhang, X. Ding, and X. Feng. 2014. Biotoxin sensing in food and environment via microchip. Electrophoresis 35 (11): 1547–1559. https://doi.org/10.1002/elps.201300570.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Xiaorui, Yurong Guo, Ma Yu, Yonghai Chai, and Yangyang Li. 2016. Biodegradation of patulin by a Byssochlamys nivea strain. Food Control 64: 142–150. https://doi.org/10.1016/j.foodcont.2015.12.016.

    Article  CAS  Google Scholar 

  • Zhao, L.H., S. Guan, X. Gao, Q.G. Ma, Y.P. Lei, X.M. Bai, and C. Ji. 2011. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. Journal of Applied Microbiology 110 (1): 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Jichun, Fengwei Tian, Qixiao Zhai, Ruipeng Yu, Hao Zhang, Gu Zhennan, and Wei Chen. 2017. Protective effects of a cocktail of lactic acid bacteria on microcystin-LR-induced hepatotoxicity and oxidative damage in BALB/c mice. RSC Advances 7 (33): 20480–20487.

    Article  CAS  Google Scholar 

  • Zhou, Yuan, Jintao Yuan, Jiang Wu, and Xiaodong Han. 2012. The toxic effects of microcystin-LR on rat spermatogonia in vitro. Toxicology Letters 212 (1): 48–56. https://doi.org/10.1016/j.toxlet.2012.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Zinedine, Abdellah, Jose Miguel Soriano, Juan Carlos Molto, and Jordi Manes. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology 45 (1): 1–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan Narbad .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narbad, A., Tang, X. (2018). Lactic Acid Bacteria and Biotoxins. In: Lactic Acid Bacteria in Foodborne Hazards Reduction. Springer, Singapore. https://doi.org/10.1007/978-981-13-1559-6_10

Download citation

Publish with us

Policies and ethics