Skip to main content

Neuroprotective Potential of Small Molecule Phytochemicals in Stroke Therapy

  • Chapter
  • First Online:
Advancement in the Pathophysiology of Cerebral Stroke

Abstract

Stroke being the second largest reason for worldwide mortality requires specific neuroprotective approaches to combat the pathophysiological outcomes. Use of synthetic neuroprotectants has not proved fruitful in clinical trials. In such scenario, scientific research has been focused on various phytochemicals which turn out to be attractive neuroprotectants. Recent studies have demonstrated that different phytochemicals target receptors and marker proteins related to pathophysiological processes involved with stroke. The use of phytochemicals has ameliorated conditions associated with ischemic stroke such as cell death (both necrotic and apoptotic), inflammation, and oxidative stress. Administration of phytochemicals has also proved successful in controlled trials indicating the safety and efficacy of these natural products. Thus, the neuroprotective potential of phytochemicals can be further exploited to design future therapeutic strategies against stroke. In the present chapter, we corroborated the use of phytochemicals and their effects on signaling mechanisms involved in stroke pathology and subsequent cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChE:

Acetylcholinesterase

AIF:

Apoptosis-inducing factor

AKT:

Protein kinase B (PKB)

ARE:

Antioxidant response elements

BBB:

Blood-brain barrier

Bcl-2:

B-cell lymphoma 2

BDNF:

Brain-derived neurotrophic factors

CAT:

Catalase

ChAT:

Choline acetyltransferase

CNS:

Central nervous system

CREB:

cAMP-response element binding protein

ERK:

Extracellular signal-regulated kinases

FADD:

Fas-associated protein with death domain

GCLC:

Glutamate-cysteine ligase catalytic subunit

IL:

Interleukin

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde-modified human albumin

NGF:

Nerve growth factor

NMDAr:

N-methyl-D-aspartate receptor

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

PI3K:

Phosphoinositide 3-kinase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

References

  1. World Health Organization, W.H., & World Health Organization (2014). The top 10 causes of death.

    Google Scholar 

  2. Kim, J., Fann, D. Y. W., Seet, R. C. S., Jo, D. G., Mattson, M. P., & Arumugam, T. V. (2016). Phytochemicals in ischemic stroke. Neuromolecular Medicine, 18(3), 283–305.

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein, L. B., Bushnell, C. D., Adams, R. J., Appel, L. J., Braun, L. T., et al. (2011). Guidelines for the primary prevention of stroke. A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(2), 517–584.

    Article  PubMed  Google Scholar 

  4. Mukherjee, D., & Patil, C. G. (2011). Epidemiology and the global burden of stroke. World Neurosurgery, 76(6), S85–S90.

    Article  PubMed  Google Scholar 

  5. Strong, K., Mathers, C., & Bonita, R. (2007). Preventing stroke: Saving lives around the world. The Lancet Neurology, 6(2), 182–187.

    Article  PubMed  Google Scholar 

  6. Caplan, L. R. (1999). Tissue plasminogen activator for acute ischemic stroke. The New England Journal of Medicine, 341(16), 1240–1241.

    Article  CAS  PubMed  Google Scholar 

  7. Smith, W. S., Sung, G., Saver, J., Budzik, R., Duckwiler, G., et al. (2008). Mechanical thrombectomy for acute ischemic stroke. Stroke, 39(4), 1205–1212.

    Article  PubMed  Google Scholar 

  8. Taschner, C. A., Treier, M., Schumacher, M., Berlis, A., Weber, J., & Niesen, W. (2011). Mechanical thrombectomy with the Penumbra recanalization device in acute ischemic stroke. Journal of Neuroradiology, 38(1), 47–52.

    Article  PubMed  Google Scholar 

  9. Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Dávalos, A., et al. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. New England Journal of Medicine, 359(13), 1317–1329.

    Article  CAS  Google Scholar 

  10. Kelly, M. A., Shuaib, A., & Todd, K. G. (2006). Matrix metalloproteinase activation and blood–brain barrier breakdown following thrombolysis. Experimental Neurology, 200(1), 38–49.

    Article  CAS  PubMed  Google Scholar 

  11. Olivier, N., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E. T., Denis, V., & Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature Medicine, 7(1), 59.

    Article  CAS  Google Scholar 

  12. Chan, S. A., Reid, K. H., Schurr, A., Miller, J. J., Iyer, V., & Tseng, M. T. (1998). Fosphenytoin reduces hippocampal neuronal damage in rat following transient global ischemia. Acta Neurochirurgica, 140(2), 175–180.

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed, N., Näsman, P., & Wahlgren, N. G. (2000). Effect of intravenous nimodipine on blood pressure and outcome after acute stroke. Stroke, 31(6), 1250–1255.

    Article  CAS  PubMed  Google Scholar 

  14. Davis, S. M., Lees, K. R., Albers, G. W., Diener, H. C., Markabi, S., Karlsson, G., & Norris, J. (2000). Selfotel in acute ischemic stroke. Stroke, 31(2), 347–354.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, Y. D., Al-Khoury, L., & Zivin, J. A. (2004). Neuroprotection for ischemic stroke: Two decades of success and failure. NeuroRx, 1(1), 36–45.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Green, A. R. (2002). Why do neuroprotective drugs that are so promising in animals fail in the clinic? An industry perspective. Clinical and Experimental Pharmacology and Physiology, 29(11), 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y. C., Gan, F. F., Shelar, S. B., Ng, K. Y., & Chew, E. H. (2013). Antioxidant and Nrf2 inducing activities of luteolin, a flavonoid constituent in Ixeris sonchifolia Hance, provide neuroprotective effects against ischemia-induced cellular injury. Food and Chemical Toxicology, 59, 272–280.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, A., Sun, H., & Wang, X. (2013). Recent advances in natural products from plants for treatment of liver diseases. European Journal of Medicinal Chemistry, 63, 570–577.

    Article  CAS  PubMed  Google Scholar 

  19. Salvador-Reyes, L. A., & Luesch, H. (2015). Biological targets and mechanisms of action of natural products from marine cyanobacteria. Natural Product Reports, 32(3), 478–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, L., Su, T., & Li, X. (2013). Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemistry, 13(15), 1864–1878.

    Article  CAS  PubMed  Google Scholar 

  21. Joshipura, K. J., Hu, F. B., Manson, J. E., Stampfer, M. J., Rimm, E. B., et al. (2001). The effect of fruit and vegetable intake on risk for coronary heart disease. Annals of Internal Medicine, 134(12), 1106–1114.

    Article  CAS  PubMed  Google Scholar 

  22. Gaetano, G., Curtis, A., Castelnuovo, A., Donati, M. B., Iacoviello, L., & Rotondo, S. (2002). Antithrombotic effect of polyphenols in experimental models. Annals of the New York Academy of Sciences, 957(1), 174–188.

    Article  PubMed  Google Scholar 

  23. Moosavi, F., Hosseini, R., Saso, L., & Firuzi, O. (2016). Modulation of neurotrophic signaling pathways by polyphenols. Drug Design, Development and Therapy, 10, 23.

    CAS  PubMed  Google Scholar 

  24. Larsson, S. C., Virtamo, J., & Wolk, A. (2013). Total and specific fruit and vegetable consumption and risk of stroke: A prospective study. Atherosclerosis, 227(1), 147–152.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, G. C., Lv, D. B., Pang, Z., Dong, J. Y., & Liu, Q. F. (2013a). Dietary fiber intake and stroke risk: A meta-analysis of prospective cohort studies. European Journal of Clinical Nutrition, 67(1), 96.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C. L., Young, S. H., Gan, H. H., Singh, R., Lao, A. Y., Baroque, A. C., Chang, H. M., Hiyadan, J. H. B., Chua, C. L., Advincula, J. M., & Muengtaweepongsa, S. (2013b). Chinese medicine neuroaid efficacy on stroke recovery. Stroke, 44(8), 2093–2100.

    Article  CAS  PubMed  Google Scholar 

  27. Oskouei, D. S., Reza, R., Mazyar, H., Homayoun, S. B., et al. (2013). The effect of Ginkgo biloba on functional outcome of patients with acute ischemic stroke: A double-blind, placebo-controlled, randomized clinical trial. Journal of Stroke and Cerebrovascular Diseases, 22(8), e557–e563.

    Article  PubMed  Google Scholar 

  28. He, L., Chen, X., Zhou, M., Zhang, D., Yang, J., et al. (2011). Radix/rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: A randomized controlled study. Phytomedicine, 18(6), 437–442.

    Article  PubMed  Google Scholar 

  29. Poppitt, S. D., Howe, C. A., Lithander, F. E., Silvers, K. M., Lin, R. B., Croft, J., et al. (2009). Effects of moderate-dose omega-3 fish oil on cardiovascular risk factors and mood after ischemic stroke. Stroke, 40(11), 3485–3492.

    Article  CAS  PubMed  Google Scholar 

  30. Jung, W. S., Choi, D. J., Cho, K. H., Lee, K. S., Moon, S. K., Kim, Y. S., Bae, H. S., & Choi, B. O. (2003). Safety and efficacy assessment of Chungpyesagan-tang for acute ischemic stroke. The American Journal of Chinese Medicine, 31(02), 181–190.

    Article  PubMed  Google Scholar 

  31. Yakovlev, A. G., & Faden, A. I. (2004). Mechanisms of neural cell death: Implications for development of neuroprotective treatment strategies. NeuroRx, 1(1), 5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kitanaka, C., & Kuchino, Y. (1999). Caspase-independent programmed cell death with necrotic morphology. Cell Death & Differentiation, 6(6), 508–515.

    Article  CAS  Google Scholar 

  33. Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A., & Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1(2), 112.

    Article  CAS  PubMed  Google Scholar 

  35. Bredesen, D. E. (1995). Neural apoptosis. Annals of Neurology, 38(6), 839–851.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, W., Liu, P., & Li, J. (2012). Necroptosis: An emerging form of programmed cell death. Critical Reviews in Oncology/Hematology, 82(3), 249–258.

    Article  PubMed  Google Scholar 

  37. Yakovlev, A. G., & Faden, A. I. (2001). Caspase-dependent apoptotic pathways in CNS injury. Molecular Neurobiology, 24(1–3), 131–144.

    CAS  PubMed  Google Scholar 

  38. Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., & Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell, 87(2), 171.

    Article  CAS  PubMed  Google Scholar 

  39. Christofferson, D. E., & Yuan, J. (2010). Necroptosis as an alternative form of programmed cell death. Current Opinion in Cell Biology, 22(2), 263–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuida, K., Zheng, T. S., Na, S., & Kuan, C. Y. (1996). Deceased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384(6607), 368.

    Article  CAS  PubMed  Google Scholar 

  41. Eldadah, B. A., & Faden, A. I. (2000). Caspase pathways, neuronal apoptosis, and CNS injury. Journal of Neurotrauma, 17(10), 811–829.

    Article  CAS  PubMed  Google Scholar 

  42. Slee, E. A., Harte, M. T., Kluck, R. M., Wolf, B. B., Casiano, C. A., Newmeyer, D. D., Wang, H. G., Reed, J. C., Nicholson, D. W., Alnemri, E. S., & Green, D. R. (1999). Ordering the cytochrome c–initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9–dependent manner. The Journal of Cell Biology, 144(2), 281–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cory, S., & Adams, J. M. (2002). The Bcl2 family: Regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2(9), 647.

    Article  CAS  PubMed  Google Scholar 

  44. Hsu, Y. T., Wolter, K. G., & Youle, R. J. (1997). Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proceedings of the National Academy of Sciences, 94(8), 3668–3672.

    Article  CAS  Google Scholar 

  45. Gross, A., Jockel, J., Wei, M. C., & Korsmeyer, S. J. (1998). Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. The EMBO Journal, 17(14), 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hay, B. A. (2000). Understanding IAP function and regulation: A view from Drosophila. Cell Death and Differentiation, 7(11), 1045.

    Article  CAS  PubMed  Google Scholar 

  47. Du, C., Fang, M., Li, Y., Li, L., & Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell, 102(1), 33–42.

    Article  CAS  PubMed  Google Scholar 

  48. Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., et al. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. Journal of Biological Chemistry, 277(1), 432–438.

    Article  CAS  Google Scholar 

  49. Volbracht, C., Leist, M., Kolb, S. A., & Nicotera, P. (2001). Apoptosis in caspase-inhibited neurons. Molecular Medicine, 7(1), 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Loo, G., Saelens, X., Van Gurp, M., MacFarlane, M., Martin, S. J., & Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death and Differentiation, 9(10), 1031.

    Article  PubMed  CAS  Google Scholar 

  51. Ravagnan, L., Roumier, T., & Kroemer, G. (2002). Mitochondria, the killer organelles and their weapons. Journal of Cellular Physiology, 192(2), 131–137.

    Article  CAS  PubMed  Google Scholar 

  52. Daugas, E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., et al. (2000). Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. The FASEB Journal, 14(5), 729–739.

    Article  CAS  PubMed  Google Scholar 

  53. Loeffler, M., Daugas, E., Susin, S. A., Zamzami, N., Métivier, D., et al. (2001). Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. The FASEB Journal, 15(3), 758–767.

    Article  CAS  PubMed  Google Scholar 

  54. Li, L. Y., Luo, X., & Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412(6842), 95–100.

    Article  CAS  PubMed  Google Scholar 

  55. Hutchins, J. B., & Barger, S. W. (1998). Why neurons die: Cell death in the nervous system. The Anatomical Record, 253(3), 79–90.

    Article  CAS  PubMed  Google Scholar 

  56. Honig, L. S., & Rosenberg, R. N. (2000). Apoptosis and neurologic disease. The American Journal of Medicine, 108(4), 317–330.

    Article  CAS  PubMed  Google Scholar 

  57. Gorman, A. M. (2008). Neuronal cell death in neurodegenerative diseases: Recurring themes around protein handling. Journal of Cellular and Molecular Medicine, 12(6a), 2263–2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., et al. (1995). Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. Journal of Neuroscience, 15(2), 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  59. Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., & Choi, D. W. (1996). Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? Journal of Cerebral Blood Flow & Metabolism, 16(2), 195–201.

    Article  CAS  Google Scholar 

  60. Rami, A. (2008). Upregulation of Beclin 1 in the ischemic penumbra. Autophagy, 4(2), 227–229.

    Article  CAS  PubMed  Google Scholar 

  61. Sauer, D., Allegrini, P. R., Cosenti, A., Pataki, A., Amacker, H., & Fagg, G. E. (1993). Characterization of the cerebroprotective efficacy of the competitive NMDA receptor antagonist CGP40116 in a rat model of focal cerebral ischemia: An in vivo magnetic resonance imaging study. Journal of Cerebral Blood Flow & Metabolism, 13(4), 595–602.

    Article  CAS  Google Scholar 

  62. West, M. J., Coleman, P. D., Flood, D. G., & Troncoso, J. C. (1994). Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. The Lancet, 344(8925), 769–772.

    Article  CAS  Google Scholar 

  63. Price, J. L., Ko, A. I., Wade, M. J., Tsou, S. K., McKeel, D. W., & Morris, J. C. (2001). Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Archives of Neurology, 58(9), 1395–1402.

    Article  CAS  PubMed  Google Scholar 

  64. Gómez-Isla, T., Price, J. L., McKeel, D. W., Jr., Morris, J. C., Growdon, J. H., & Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. Journal of Neuroscience, 16(14), 4491–4500.

    Article  PubMed  Google Scholar 

  65. Stadelmann, C., Deckwerth, T. L., Srinivasan, A., Bancher, C., Brück, W., et al. (1999). Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease: Evidence for apoptotic cell death. The American Journal of Pathology, 155(5), 1459–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rohn, T. T., Head, E., Nesse, W. H., Cotman, C. W., & Cribbs, D. H. (2001). Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiology of Disease, 8(6), 1006–1016.

    Article  CAS  PubMed  Google Scholar 

  67. Rohn, T. T., Rissman, R. A., Davis, M. C., Kim, Y. E., Cotman, C. W., & Head, E. (2002). Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain. Neurobiology of Disease, 11(2), 341–354.

    Article  CAS  PubMed  Google Scholar 

  68. Colurso, G. J., Nilson, J. E., & Vervoort, L. G. (2003). Quantitative assessment of DNA fragmentation and beta-amyloid deposition in insular cortex and midfrontal gyrus from patients with Alzheimer's disease. Life Sciences, 73(14), 1795–1803.

    Article  CAS  PubMed  Google Scholar 

  69. Hartmann, A., Troadec, J. D., Hunot, S., Kikly, K., Faucheux, B. A., Mouatt-Prigent, A., Ruberg, M., Agid, Y., & Hirsch, E. C. (2001). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. Journal of Neuroscience, 21(7), 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  70. Viswanath, V., Wu, Y., Boonplueang, R., Chen, S., Stevenson, F. F., Yantiri, F., Yang, L., Beal, M. F., & Andersen, J. K. (2001). Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease. Journal of Neuroscience, 21(24), 9519–9528.

    Article  CAS  PubMed  Google Scholar 

  71. Mogi, M., Harada, M., Riederer, P., Narabayashi, H., Fujita, K., & Nagatsu, T. (1994). Tumor necrosis factor-a (TNF-a) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neuroscience Letters, 165(1), 208–210.

    Article  CAS  PubMed  Google Scholar 

  72. Mogi, M., Harada, M., Kondo, T., Mizuno, Y., Narabayashi, H., Riederer, P., & Nagatsu, T. (1996). The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neuroscience Letters, 220(3), 195–198.

    Article  CAS  PubMed  Google Scholar 

  73. Hartmann, A., Mouatt-Prigent, A., Faucheux, B. A., Agid, Y., & Hirsch, E. C. (2002). FADD: A link between TNF family receptors and caspases in Parkinson’s disease. Neurology, 58(2), 308–310.

    Article  CAS  PubMed  Google Scholar 

  74. Bhullar, K. S., & Rupasinghe, H. P. (2013). Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxidative Medicine and Cellular Longevity, 2013, 891748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Reale, M., Iarlori, C., Thomas, A., Gambi, D., Perfetti, B., Di Nicola, M., & Onofrj, M. (2009). Peripheral cytokines profile in Parkinson’s disease. Brain, Behavior, and Immunity, 23(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  76. Menza, M., Dobkin, R. D., Marin, H., Mark, M. H., Gara, M., Bienfait, K., Dicke, A., & Kusnekov, A. (2010). The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics, 51(6), 474–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J., Song, Y., Gao, M., Bai, X., & Chen, Z. (2016). Neuroprotective effect of several phytochemicals and its potential application in the prevention of neurodegenerative diseases. Geriatrics, 1(4), 29.

    Article  PubMed Central  Google Scholar 

  78. Xia, J., Cheng, L., Mei, C., Ma, J., Shi, Y., et al. (2014). Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Current Pharmaceutical Design, 20(33), 5348–5353.

    Article  CAS  PubMed  Google Scholar 

  79. Chang, Y., Hsieh, C. Y., Peng, Z. A., Yen, T. L., Hsiao, G., et al. (2009). Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. Journal of Biomedical Science, 16(1), 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dohare, P., Garg, P., Jain, V., Nath, C., & Ray, M. (2008). Dose dependence and therapeutic window for the neuroprotective effects of curcumin in thromboembolic model of rat. Behavioural Brain Research, 193(2), 289–297.

    Article  CAS  PubMed  Google Scholar 

  81. Saraf, M. K., Prabhakar, S., & Anand, A. (2010). Neuroprotective effect of Bacopa monnieri on ischemia induced brain injury. Pharmacology Biochemistry and Behavior, 97(2), 192–197.

    Article  CAS  Google Scholar 

  82. Pujari, R. R., Vyawahare, N. S., & Kagathara, V. G. (2011). Evaluation of antioxidant and neuroprotective effect of date palm (Phoenix dactylifera L.) against bilateral common carotid artery occlusion in rats. Indian Journal of Experimental Biology, 49(8), 627–633.

    PubMed  Google Scholar 

  83. An, G., & Morris, M. E. (2010). Effects of the isoflavonoid biochanin A on the transport of mitoxantrone in vitro and in vivo. Biopharmaceutics & Drug Disposition, 31(5–6), 340–350.

    CAS  Google Scholar 

  84. Yamagata, K., Kitazawa, T., Shinoda, M., Tagawa, C., Chino, M., & Matsufuji, H. (2009). Stroke status evoked adhesion molecule genetic alterations in astrocytes isolated from stroke-prone spontaneously hypertensive rats and the apigenin inhibition of their expression. Stroke Research and Treatment, 2010.

    Google Scholar 

  85. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21(21), 8370–8377.

    Article  CAS  PubMed  Google Scholar 

  86. Frautschy, S. A., Hu, W., Kim, P., Miller, S. A., Chu, T., Harris-White, M. E., & Cole, G. M. (2001). Phenolic anti-inflammatory antioxidant reversal of Aß-induced cognitive deficits and neuropathology. Neurobiology of Aging, 22(6), 993–1005.

    Article  CAS  PubMed  Google Scholar 

  87. Wang, M. S., Boddapati, S., Emadi, S., & Sierks, M. R. (2010). Curcumin reduces a-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neuroscience, 11(1), 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A., & Cole, G. M. (2005). Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry, 280(7), 5892–5901.

    Article  CAS  Google Scholar 

  89. Pan, J., Li, H., Ma, J. F., Tan, Y. Y., Xiao, Q., Ding, J. Q., & Chen, S. D. (2012). Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Translational Neurodegeneration, 1(1), 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, Q., Sun, A. Y., Simonyi, A., Jensen, M. D., Shelat, P. B., et al. (2005). Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. Journal of Neuroscience Research, 82(1), 138–148.

    Article  CAS  PubMed  Google Scholar 

  91. Bigford, G. E., & Del Rossi, G. (2014). Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Advances in Nutrition: An International Review Journal, 5(4), 394–403.

    Article  CAS  Google Scholar 

  92. Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature reviews. Drug Discovery, 5(6), 493.

    Article  CAS  PubMed  Google Scholar 

  93. Han, Y. S., Zheng, W. H., Bastianetto, S., Chabot, J. G., & Quirion, R. (2004). Neuroprotective effects of resveratrol against ß-amyloid-induced neurotoxicity in rat hippocampal neurons: Involvement of protein kinase C. British Journal of Pharmacology, 141(6), 997–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, F., Liu, J., & Shi, J. S. (2010). Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. European Journal of Pharmacology, 636(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  95. Song, J., Cheon, S. Y., Jung, W., Lee, W. T., & Lee, J. E. (2014). Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. International Journal of Molecular Sciences, 15(9), 15512–15529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Costa, L. G., Garrick, J. M., Roquè, P. J., & Pellacani, C. (2016). Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxidative Medicine and Cellular Longevity, 2016, 2986796.

    PubMed  PubMed Central  Google Scholar 

  97. Liang, L., Gao, C., Luo, M., Wang, W., Zhao, C., Zu, Y., Efferth, T., & Fu, Y. (2013). Dihydroquercetin (DHQ) induced HO-1 and NQO1 expression against oxidative stress through the Nrf2-dependent antioxidant pathway. Journal of Agricultural and Food Chemistry, 61(11), 2755–2761.

    Article  CAS  PubMed  Google Scholar 

  98. Gan, L., & Johnson, J. A. (2014). Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(8), 1208–1218.

    Article  CAS  Google Scholar 

  99. Arredondo, F., Echeverry, C., Abin-Carriquiry, J. A., Blasina, F., Antúnez, K., Jones, D. P., Go, Y. M., Liang, Y. L., & Dajas, F. (2010). After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radical Biology and Medicine, 49(5), 738–747.

    Article  CAS  PubMed  Google Scholar 

  100. Saw, C. L. L., Guo, Y., Yang, A. Y., Paredes-Gonzalez, X., Ramirez, C., Pung, D., & Kong, A. N. T. (2014). The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food and Chemical Toxicology, 72, 303–311.

    Article  CAS  PubMed  Google Scholar 

  101. Granado-Serrano, A. B., Martín, M. A., Bravo, L., Goya, L., & Ramos, S. (2012). Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chemico-Biological Interactions, 195(2), 154.

    Article  CAS  PubMed  Google Scholar 

  102. Ansari, M. A., Abdul, H. M., Joshi, G., Opii, W. O., & Butterfield, D. A. (2009). Protective effect of quercetin in primary neurons against Aß (1–42): Relevance to Alzheimer’s disease. The Journal of Nutritional Biochemistry, 20(4), 269–275.

    Article  CAS  PubMed  Google Scholar 

  103. El Omri, A., Han, J., Yamada, P., Kawada, K., Abdrabbah, M. B., & Isoda, H. (2010). Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2. Journal of Ethnopharmacology, 131(2), 451–458.

    Article  PubMed  CAS  Google Scholar 

  104. Bayat, M., Tameh, A. A., Ghahremani, M. H., Akbari, M., Mehr, S. E., Khanavi, M., & Hassanzadeh, G. (2012). Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo. DARU Journal of Pharmaceutical Sciences, 20(1), 42.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gramza-Michalowska, A., & Regula, J. (2007). Use of tea extracts (Camelia sinensis) in jelly candies as polyphenols sources in human diet. Asia Pacific Journal of Clinical Nutrition, 16(S1), 43–46.

    CAS  PubMed  Google Scholar 

  106. Venkatesan, R., Ji, E., & Kim, S. Y. (2015). Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review. BioMed Research International, 2015, 814068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Koh, S. H., Kim, S. H., Kwon, H., Park, Y., Kim, K. S., Song, C. W., Kim, J., Kim, M. H., Yu, H. J., Henkel, J. S., & Jung, H. K. (2003). Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Molecular Brain Research, 118(1), 72–81.

    Article  CAS  PubMed  Google Scholar 

  108. Yang, Y. H., Hsieh, T. J., Tsai, M. L., Chen, C. H., Lin, H. T., & Wu, S. J. (2014). Neuroprotective effects of Hu-Yi-Neng, a diet supplement, on SH-SY5Y human neuroblastoma cells. The Journal of Nutrition, Health & Aging, 18(2), 184–190.

    Article  CAS  Google Scholar 

  109. Xiao, Q., Wang, C., Li, J., Hou, Q., Li, J., Ma, J., Wang, W., & Wang, Z. (2010). Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25–35 partly via up-regulation of brain-derived neurotrophic factor. European Journal of Pharmacology, 647(1), 48–54.

    Article  CAS  PubMed  Google Scholar 

  110. Kim, C. S., Kwon, O. W., Kim, S. Y., & Lee, K. R. (2013). Bioactive lignans from the trunk of Abies holophylla. Journal of Natural Products, 76(11), 2131–2135.

    Article  CAS  PubMed  Google Scholar 

  111. Chung, H. S., Lee, Y. C., Kyung Rhee, Y., & Lee, S. Y. (2011). Consumer acceptance of ginseng food products. Journal of Food Science, 76(9), S516–S522.

    Article  CAS  PubMed  Google Scholar 

  112. Joo, S. S., Yoo, Y. M., Ahn, B. W., Nam, S. Y., Kim, Y. B., Hwang, K. W., & Lee, D. I. (2008). Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biological and Pharmaceutical Bulletin, 31(7), 1392–1396.

    Article  CAS  PubMed  Google Scholar 

  113. Kang, K. A., Kang, J. H., & Yang, M. P. (2008). Ginseng total saponin enhances the phagocytic capacity of canine peripheral blood phagocytes in vitro. The American Journal of Chinese Medicine, 36(02), 329–341.

    Article  CAS  PubMed  Google Scholar 

  114. Kim, M. S., Yu, J. M., Kim, H. J., Kim, H. B., Kim, S. T., Jang, S. K., Choi, Y. W., Lee, D. I., & Joo, S. S. (2014). Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in Neuro-2a cells. Biological and Pharmaceutical Bulletin, 37(5), 826–833.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Z. J., Nie, B. M., Chen, H. Z., & Lu, Y. (2006). Panaxynol induces neurite outgrowth in PC12D cells via cAMP-and MAP kinase-dependent mechanisms. Chemico-Biological Interactions, 159(1), 58–64.

    Article  CAS  PubMed  Google Scholar 

  116. Roy, A., & Saraf, S. (2006). Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom. Biological and Pharmaceutical Bulletin, 29(2), 191–201.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, Q., Li, J. K., Ge, R., Liang, J. Y., Li, Q. S., & Min, Z. D. (2013). Novel NGF-potentiating limonoids from the fruits of Melia toosendan. Fitoterapia, 90, 192–198.

    Article  CAS  PubMed  Google Scholar 

  118. Zu Zhu, X., Li, X. Y., & Liu, J. (2004). Recent pharmacological studies on natural products in China. European Journal of Pharmacology, 500(1), 221–230.

    Article  CAS  Google Scholar 

  119. Zhang, H. Y., & Tang, X. C. (2006). Neuroprotective effects of huperzine A: New therapeutic targets for neurodegenerative disease. Trends in Pharmacological Sciences, 27(12), 619–625.

    Article  CAS  PubMed  Google Scholar 

  120. Mao, X. Y., Cao, D. F., Li, X., Yin, J. Y., Wang, Z. B., Zhang, Y., Mao, C. X., Zhou, H. H., & Liu, Z. Q. (2014). Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 15(5), 7667–7683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Hsu, Y. Y., Tseng, Y. T., & Lo, Y. C. (2013). Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicology and Applied Pharmacology, 272(3), 787–796.

    Article  CAS  PubMed  Google Scholar 

  122. Lee, B., Sur, B., Shim, I., Lee, H., & Hahm, D. H. (2012). Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. The Korean Journal of Physiology & Pharmacology, 16(2), 79–89.

    Article  CAS  Google Scholar 

  123. Jia, L., Liu, J., Song, Z., Pan, X., Chen, L., Cui, X., & Wang, M. (2012). Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. Journal of Pharmacy and Pharmacology, 64(10), 1510–1521.

    Article  CAS  PubMed  Google Scholar 

  124. Baitharu, I., Jain, V., Deep, S. N., Shroff, S., Sahu, J. K., Naik, P. K., & Ilavazhagan, G. (2014). Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One, 9(10), e105311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kumar, G., & Patnaik, R. (2016). Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study. Medical Hypotheses, 92, 35–43.

    Article  CAS  PubMed  Google Scholar 

  126. Kumar, G., Paliwal, P., & Patnaik, R. (2017). Withania somnifera phytochemicals confer neuroprotection by inhibition of the catalytic domain of human matrix metalloproteinase-9. Letters in Drug Design & Discovery, 14(6), 718–726.

    Article  CAS  Google Scholar 

  127. Kumar, G., & Patnaik, R. (2017). Inhibition of gelatinases (MMP-2 and MMP-9) by Withania somnifera phytochemicals confers neuroprotection in stroke: An in silico analysis. Interdisciplinary Sciences: Computational Life Sciences, 9, 1–2. https://doi.org/10.1007/s12539-017-0231-x.

    Article  CAS  Google Scholar 

  128. Eliasson, M. J., Huang, Z., Ferrante, R. J., Sasamata, M., Molliver, M. E., Snyder, S. H., & Moskowitz, M. A. (1999). Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. Journal of Neuroscience, 19(14), 5910–5918.

    Article  CAS  PubMed  Google Scholar 

  129. Kumar, G., Mukherjee, S., & Patnaik, R. (2017). Identification of withanolide-M and stigmasterol as potent neuroprotectant and dual inhibitor of inducible/neuronal nitric oxide synthase by structure-based virtual screening. Journal of Biological Engineering Research and Review, 4(1), 09–13.

    Google Scholar 

  130. Kumar, G., Paliwal, P., Patnaik, N., & Patnaik, R. (2017). Withania somnifera phytochemicals confer neuroprotection by selective inhibition of nNos: An in silico study to search potent and selective inhibitors for human nNOS. Journal of Theoretical and Computational Chemistry. https://doi.org/10.1142/S0219633617500420.

    Article  CAS  Google Scholar 

  131. Darvesh, A. S., Carroll, R. T., Bishayee, A., Geldenhuys, W. J., & Van der Schyf, C. J. (2010). Oxidative stress and Alzheimer’s disease: Dietary polyphenols as potential therapeutic agents. Expert Review of Neurotherapeutics, 10(5), 729–745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumedha Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S., Tripathi, A.K., Kumar, G., Patnaik, R., Dhanesha, N., Mishra, D. (2019). Neuroprotective Potential of Small Molecule Phytochemicals in Stroke Therapy. In: Patnaik, R., Tripathi, A., Dwivedi, A. (eds) Advancement in the Pathophysiology of Cerebral Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-13-1453-7_12

Download citation

Publish with us

Policies and ethics