Skip to main content

Clinical Genetics of Vitelliform Macular Dystrophy: An Asian Perspective

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 620 Accesses

Abstract

Vitelliform macular dystrophy (VMD) is a group of macular dystrophy characterized by the subretinal accumulation of yellow yolk-like materials which predominantly affect the macula. Best vitelliform macular dystrophy is among the most common autosomal dominant (AD) retinal dystrophy, caused by mutations in the BEST1 gene. Since first identification of BEST1 gene in 1998, molecular biology and pathophysiology of BEST1 gene and vitelliform macular dystrophy were studied. Recent advances in genetic analysis have described over 200 different human BEST1 mutations to date, associated with a broad spectrum of ocular diseases, called bestrophinopathy. However, the genotype-phenotype correlation in VMD is largely unexplored. Genetic test is clinically important in the diagnosis of VMD because the clinical features of VMD are similar to those of exudative age-related macular degeneration (AMD), choroidal neovascularization (CNV), or central serous chorioretinopathy (CSC). Here, in addition to describing the clinical characteristics of VMD, this chapter focuses on the clinical genetics of BEST1 gene in VMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Best F. Uber eine hereditare maculaafektion; Beitrage zur verergslehre. Zschr Augenheilkd. 1905;13:199–212.

    Google Scholar 

  2. Petrukhin K, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet. 1998;19:241–7.

    Article  CAS  PubMed  Google Scholar 

  3. Boon CJ, et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res. 2009;28:187–205.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson AA, et al. Bestrophin 1 and retinal disease. Prog Retin Eye Res. 2017;58:45–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gass J. A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc. 1974;72:139.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chowers I, Tiosano L, Audo I, Grunin M, Boon CJ. Adult-onset foveomacular vitelliform dystrophy: a fresh perspective. Prog Retin Eye Res. 2015;47:64–85.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson AA, et al. Bestrophin 1 and retinal disease. Prog Retin Eye Res. 2017;58:45–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boon CJ, et al. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res. 2009;28:187–205.

    Article  CAS  PubMed  Google Scholar 

  9. Jun I, et al. Adult-onset Vitelliform macular dystrophy caused by BEST1 p.Ile38Ser mutation is a mild form of Best Vitelliform macular dystrophy. Sci Rep. 2017;7:9146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohler CW, Fine SL. Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology. 1981;88:688–92.

    Article  CAS  PubMed  Google Scholar 

  11. Nordstrom S. Hereditary macular degeneration--a population survey in the country of Vsterbotten, Sweden. Hereditas. 1974;78:41–62.

    Article  CAS  PubMed  Google Scholar 

  12. Bitner H, Schatz P, Mizrahi-Meissonnier L, Sharon D, Rosenberg T. Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: data from a national center in Denmark. Am J Ophthalmol. 2012;154:403–412 e404.

    Article  PubMed  Google Scholar 

  13. Dalvin LA, Pulido JS, Marmorstein AD. Vitelliform dystrophies: prevalence in Olmsted County, Minnesota, United States. Ophthalmic Genet. 2017;38:143–7.

    Article  CAS  PubMed  Google Scholar 

  14. Marmorstein AD, Cross HE, Peachey NS. Functional roles of bestrophins in ocular epithelia. Prog Retin Eye Res. 2009;28:206–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marmorstein AD, et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2000;97:12758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kane Dickson V, Pedi L, Long SB. Structure and insights into the function of a Ca(2+)-activated Cl(−) channel. Nature. 2014;516:213–8.

    Article  CAS  PubMed  Google Scholar 

  17. Marmorstein AD, et al. Bestrophin-1 influences transepithelial electrical properties and Ca2+ signaling in human retinal pigment epithelium. Mol Vis. 2015;21:347–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Moshfegh Y, et al. BESTROPHIN1 mutations cause defective chloride conductance in patient stem cell-derived RPE. Hum Mol Genet. 2016;25:2672–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nordstrom S, Barkman Y. Hereditary maculardegeneration (HMD) in 246 cases traced to one gene-source in Central Sweden. Hereditas. 1977;84:163–76.

    Article  CAS  PubMed  Google Scholar 

  20. Mohler CW, Fine SL. Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology. 1981;88:688–92.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Small KW, Grossniklaus HE. Clinicopathologic findings in Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol. 2011;249:745–51.

    Article  PubMed  Google Scholar 

  22. O’Gorman S, Flaherty WA, Fishman GA, Berson EL. Histopathologic findings in Best’s vitelliform macular dystrophy. Arch Ophthalmol. 1988;106:1261–8.

    Article  PubMed  Google Scholar 

  23. Deutman A. Electro-oculography in families with vitelliform dystrophy of the fovea: detection of the carrier state. Arch Ophthalmol. 1969;81:305–16.

    Article  CAS  PubMed  Google Scholar 

  24. Scholl HPN, Schuster AM, Vonthein R, Zrenner E. Mapping of retinal function in Best macular dystrophy using multifocal electroretinography. Vis Res. 2002;42:1053–61.

    Article  PubMed  Google Scholar 

  25. Scoles D, et al. Photoreceptor inner segment morphology in Best vitelliform macular dystrophy. Retina (Philadelphia, Pa.). 2017;37:741–8.

    Article  Google Scholar 

  26. Kay DB, et al. Outer retinal structure in best vitelliform macular dystrophy. JAMA ophthalmology. 2013;131:1207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Deutman AF. Ph.D. thesis, Koninklijke Van Gorcum, Assen; 1971.

    Google Scholar 

  28. Battaglia Parodi M, et al. Optical coherence tomography in Best vitelliform macular dystrophy. Eur J Ophthalmol. 2017;27:201–4.

    Article  PubMed  Google Scholar 

  29. Battaglia Parodi M, Iacono P, Romano F, Bandello F. Spectral domain optical coherence tomography features in different stages of best vitelliform macular dystrophy. Retina (Philadelphia, Pa.). 2017;38(5):1041–6.

    Article  Google Scholar 

  30. Qian CX, et al. Optical coherence tomography examination of the retinal pigment epithelium in Best vitelliform macular dystrophy. Ophthalmology. 2017;124:456–63.

    Article  PubMed  Google Scholar 

  31. Querques G, et al. High-definition optical coherence tomography features in vitelliform macular dystrophy. Am J Ophthalmol. 2008;146:501–7. e501.

    Article  PubMed  Google Scholar 

  32. Ruiz-Moreno O, Calvo P, Ferrández B, Torrón C. Long-term outcomes of intravitreal ranibizumab for choroidal neovascularization secondary to Best’s disease: 3-year follow-up. Acta Ophthalmol. 2012;90:e574–5.

    Article  PubMed  Google Scholar 

  33. Chhablani J, Jalali S. Intravitreal bevacizumab for choroidal neovascularization secondary to Best vitelliform macular dystrophy in a 6-year-old child. Eur J Ophthalmol. 2012;22:677–9.

    Article  PubMed  Google Scholar 

  34. Leu J, Schrage NF, Degenring RF. Choroidal neovascularisation secondary to Best’s disease in a 13-year-old boy treated by intravitreal bevacizumab. Graefes Arch Clin Exp Ophthalmol. 2007;245:1723–5.

    Article  PubMed  Google Scholar 

  35. Booij JC, et al. Course of visual decline in relation to the Best1 genotype in vitelliform macular dystrophy. Ophthalmology. 2010;117:1415–22.

    Article  PubMed  Google Scholar 

  36. Fishman GA, et al. Visual acuity in patients with best vitelliform macular dystrophy. Ophthalmology. 1993;100:1665–70.

    Article  CAS  PubMed  Google Scholar 

  37. Brecher R, Bird A. Adult vitelliform macular dystrophy. Eye. 1990;4:210–5.

    Article  PubMed  Google Scholar 

  38. Glacet-Bernard A, Soubrane G, Coscas G. Macular vitelliform degeneration in adults. Retrospective study of a series of 85 patients. J Fr Ophtalmol. 1989;13:407–20.

    Google Scholar 

  39. Chowers I, Tiosano L, Audo I, Grunin M, Boon CJ. Adult-onset foveomacular vitelliform dystrophy: a fresh perspective. Prog Retin Eye Res. 2015;47:64–85.

    Article  CAS  PubMed  Google Scholar 

  40. Puche N, et al. High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy. Br J Ophthalmol. 2010;94(9):1190–6.

    Article  CAS  PubMed  Google Scholar 

  41. Benhamou N, et al. Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol. 2003;135:362–7.

    Article  PubMed  Google Scholar 

  42. Querques G, Forte R, Querques L, Massamba N, Souied EH. Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol. 2011;152:304–13.

    Article  PubMed  Google Scholar 

  43. Felbor U, Schilling H, Weber BH. Adult vitelliform macular dystrophy is frequently associated with mutations in the peripherin/RDS gene. Hum Mutat. 1997;10:301–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yamaguchi K, et al. Adult-onset foveomacular vitelliform dystrophy with retinal folds. Jpn J Ophthalmol. 2001;45:533–7.

    Article  CAS  PubMed  Google Scholar 

  45. Da Pozzo S, Parodi MB, Toto L, Ravalico G. Occult choroidal neovascularization in adult-onset foveomacular vitelliform dystrophy. Ophthalmologica. 2001;215:412–4.

    Article  PubMed  Google Scholar 

  46. Mimoun G, et al. Ranibizumab for choroidal neovascularization associated with adult-onset foveomacular vitelliform dystrophy: one-year results. Retina (Philadelphia, Pa.). 2013;33:513–21.

    Article  Google Scholar 

  47. Testa F, et al. A normal electro-oculography in a family affected by best disease with a novel spontaneous mutation of the BEST1 gene. Br J Ophthalmol. 2008;92:1467–70.

    Article  CAS  PubMed  Google Scholar 

  48. Katagiri S, et al. Mutation analysis of BEST1 in Japanese patients with Best’s vitelliform macular dystrophy. Br J Ophthalmol. 2015;99:1577–82.

    Article  PubMed  Google Scholar 

  49. Kinnick TR, et al. Autosomal recessive vitelliform macular dystrophy in a large cohort of vitelliform macular dystrophy patients. Retina (Philadelphia, Pa). 2011;31:581–95.

    Article  CAS  Google Scholar 

  50. Wong RL, et al. Novel and homozygous BEST1 mutations in Chinese patients with Best vitelliform macular dystrophy. Retina (Philadelphia, Pa.). 2010;30:820–7.

    Article  Google Scholar 

  51. Matson ME, Ly SV, Monarrez JL. Novel mutation in BEST1 associated with atypical Best Vitelliform dystrophy. Optom Vis Sci. 2015;92:e180–9.

    Article  PubMed  Google Scholar 

  52. Boon CJ, et al. Clinical and molecular genetic analysis of best vitelliform macular dystrophy. Retina (Philadelphia, Pa.). 2009;29:835–47.

    Article  Google Scholar 

  53. Querques G, et al. Functional and clinical data of Best vitelliform macular dystrophy patients with mutations in the BEST1 gene. Mol Vis. 2009;15:2960–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian R, Yang G, Wang J, Chen Y. Screening for BEST1 gene mutations in Chinese patients with bestrophinopathy. Mol Vis. 2014;20:1594–604.

    PubMed  PubMed Central  Google Scholar 

  55. Lacassagne E, et al. Phenotypic variability in a French family with a novel mutation in the BEST1 gene causing multifocal Best vitelliform macular dystrophy. Mol Vis. 2011;17:309–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Apushkin MA, Fishman GA, Taylor CM, Stone EM. Novel de novo mutation in a patient with Best macular dystrophy. Arch Ophthalmol. 2006;124:887–9.

    Article  PubMed  Google Scholar 

  57. Mullins RF, Kuehn MH, Faidley EA, Syed NA, Stone EM. Differential macular and peripheral expression of bestrophin in human eyes and its implication for best disease. Invest Ophthalmol Vis Sci. 2007;48:3372–80.

    Article  PubMed  Google Scholar 

  58. Lotery AJ, et al. Allelic variation in the VMD2 gene in best disease and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41:1291–6.

    CAS  PubMed  Google Scholar 

  59. Booij JC, et al. Course of visual decline in relation to the Best1 genotype in vitelliform macular dystrophy. Ophthalmology. 2010;117:1415–22.

    Article  PubMed  Google Scholar 

  60. Boon CJ, et al. Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol. 2007;125:1100–6.

    Article  CAS  PubMed  Google Scholar 

  61. Kramer F, et al. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet. 2000;8:286–92.

    Article  CAS  PubMed  Google Scholar 

  62. Bakall B, et al. The mutation spectrum of the bestrophin protein--functional implications. Hum Genet. 1999;104:383–9.

    Article  CAS  PubMed  Google Scholar 

  63. Maia-Lopes S, et al. Gene symbol: BEST1. Disease: Best macular dystrophy. Hum Genet. 2008;123:111.

    PubMed  Google Scholar 

  64. Meunier I, et al. Systematic screening of BEST1 and PRPH2 in juvenile and adult vitelliform macular dystrophies: a rationale for molecular analysis. Ophthalmology. 2011;118:1130–6.

    Article  PubMed  Google Scholar 

  65. Renner AB, et al. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology. 2005;112:586–92.

    Article  PubMed  Google Scholar 

  66. Marquardt A, et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet. 1998;7:1517–25.

    Article  CAS  PubMed  Google Scholar 

  67. Kramer F, Mohr N, Kellner U, Rudolph G, Weber BH. Ten novel mutations in VMD2 associated with Best macular dystrophy (BMD). Hum Mutat. 2003;22:418.

    Article  CAS  PubMed  Google Scholar 

  68. Caldwell GM, et al. Bestrophin gene mutations in patients with Best vitelliform macular dystrophy. Genomics. 1999;58:98–101.

    Article  CAS  PubMed  Google Scholar 

  69. Glavac D, et al. Clinical and genetic heterogeneity in Slovenian patients with BEST disease. Acta Ophthalmol. 2016;94:e786–94.

    Article  CAS  PubMed  Google Scholar 

  70. Liu J, Zhang Y, Xuan Y, Liu W, Wang M. Novel BEST1 mutations and special clinical features of Best Vitelliform macular dystrophy. Ophthalmic Res. 2016;56:178–85.

    Article  CAS  PubMed  Google Scholar 

  71. Marchant D, et al. Identification of novel VMD2 gene mutations in patients with best vitelliform macular dystrophy. Hum Mutat. 2001;17:235.

    Article  CAS  PubMed  Google Scholar 

  72. White K, Marquardt A, Weber BH. VMD2 mutations in vitelliform macular dystrophy (Best disease) and other maculopathies. Hum Mutat. 2000;15:301–8.

    Article  CAS  PubMed  Google Scholar 

  73. Sodi A, et al. A novel mutation in the VMD2 gene in an Italian family with Best maculopathy. J Fr Ophtalmol. 2007;30:616–20.

    Article  CAS  PubMed  Google Scholar 

  74. Schatz P, et al. Evaluation of macular structure and function by OCT and electrophysiology in patients with vitelliform macular dystrophy due to mutations in BEST1. Invest Ophthalmol Vis Sci. 2010;51:4754–65.

    Article  PubMed  Google Scholar 

  75. Eksandh L, Bakall B, Bauer B, Wadelius C, Andreasson S. Best’s vitelliform macular dystrophy caused by a new mutation (Val89Ala) in the VMD2 gene. Ophthalmic Genet. 2001;22:107–15.

    Article  CAS  PubMed  Google Scholar 

  76. Li Y, et al. A novel mutation of the VMD2 gene in a Chinese family with best vitelliform macular dystrophy. Ann Acad Med Singap. 2006;35:408–10.

    PubMed  Google Scholar 

  77. Marchant D, et al. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. J Med Genet. 2007;44:e70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Palomba G, et al. A novel spontaneous missense mutation in VMD2 gene is a cause of a best macular dystrophy sporadic case. Am J Ophthalmol. 2000;129:260–2.

    Article  CAS  PubMed  Google Scholar 

  79. Wabbels B, Preising MN, Kretschmann U, Demmler A, Lorenz B. Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol. 2006;244:1453–66.

    Article  CAS  PubMed  Google Scholar 

  80. Lin Y, et al. Two novel mutations in the bestrophin-1 gene and associated clinical observations in patients with best vitelliform macular dystrophy. Mol Med Rep. 2015;12:2584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wittstrom E, et al. Morphological and functional changes in multifocal vitelliform retinopathy and biallelic mutations in BEST1. Ophthalmic Genet. 2011;32:83–96.

    Article  CAS  PubMed  Google Scholar 

  82. Sohn EH, et al. Phenotypic variability due to a novel Glu292Lys variation in exon 8 of the BEST1 gene causing Best macular dystrophy. Arch Ophthalmol. 2009;127:913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yanagi Y, Sekine H, Mori M. Identification of a novel VMD2 mutation in Japanese patients with Best disease. Ophthalmic Genet. 2002;23:129–33.

    Article  PubMed  Google Scholar 

  84. Arora R, et al. Unilateral BEST1-associated retinopathy. Am J Ophthalmol. 2016;169:24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marchant D, et al. Use of denaturing HPLC and automated sequencing to screen the VMD2 gene for mutations associated with Best’s vitelliform macular dystrophy. Ophthalmic Genet. 2002;23:167–74.

    Article  CAS  PubMed  Google Scholar 

  86. Sodi A, et al. BEST1 sequence variants in Italian patients with vitelliform macular dystrophy. Mol Vis. 2012;18:2736–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin Y, et al. Bestrophin 1 gene analysis and associated clinical findings in a Chinese patient with Best vitelliform macular dystrophy. Mol Med Rep. 2017;16:4751–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin Y, et al. Genetic variations in Bestrophin1 and associated clinical findings in two Chinese patients with juvenile-onset and adult-onset best vitelliform macular dystrophy. Mol Med Rep. 2017;17(1):225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tian L, et al. Screening of BEST1 gene in a Chinese cohort with Best Vitelliform macular dystrophy or autosomal recessive Bestrophinopathy. Invest Ophthalmol Vis Sci. 2017;58:3366–75.

    Article  CAS  PubMed  Google Scholar 

  90. Allikmets R, et al. Evaluation of the best disease gene in patients with age-related macular degeneration and other maculopathies. Hum Genet. 1999;104:449–53.

    Article  CAS  PubMed  Google Scholar 

  91. Wells J, et al. Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet. 1993;3:213–8.

    Article  CAS  PubMed  Google Scholar 

  92. Manes G, et al. Mutations in IMPG1 cause vitelliform macular dystrophies. Am J Hum Genet. 2013;93:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meunier I, et al. Frequency and clinical pattern of vitelliform macular dystrophy caused by mutations of interphotoreceptor matrix IMPG1 and IMPG2 genes. Ophthalmology. 2014;121:2406–14.

    Article  PubMed  Google Scholar 

  94. Mandai M, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.

    Article  CAS  PubMed  Google Scholar 

  95. Maguire AM, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim E, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017;8:14500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim K, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 2017;27:419–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Suzuki K, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ruan GX, et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital Amaurosis 10. Mol Ther. 2017;25:331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang X, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun. 2017;8:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaudelli NM, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;51(7681):464–71.

    Article  CAS  Google Scholar 

  102. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yanik M, et al. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Prog Retin Eye Res. 2017;56:1–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

Sung Wook Park, Chang ki Yoon, Dae Joong Ma, Un Chul Park, and Hyeong Gon Yu declare that they have no conflict of interest.

All procedures followed were in accordance with the ethical standards of the responsible committee on institutional review board and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong Gon Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, S.W., Yoon, C.K., Ma, D.J., Park, U.C., Yu, H.G. (2019). Clinical Genetics of Vitelliform Macular Dystrophy: An Asian Perspective. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics