Skip to main content

Enhancement of Fatigue Life of Thick-Walled Cylinders Through Thermal Autofrettage Combined with Shrink-Fit

  • Conference paper
  • First Online:
Strengthening and Joining by Plastic Deformation

Abstract

Thick-walled cylindrical components are used in many industries, e.g. oil and chemical industries, artillery industries and nuclear power plants for withstanding high pressure or thermal gradient. Such components are subjected to autofrettage prior to their use in service, which increases their load carrying capacity as well as fatigue life. The fatigue life of the cylinder is important when the cylinder is subjected to a fluctuating or repeated pressure. Thermal autofrettage is a potential process capable of increasing the pressure carrying capacity as well as the thermal gradient capacity of thick-walled cylinders. This is achieved by employing a radial thermal gradient across the wall thickness of the cylinder. Due to the beneficial compressive residual stresses generated at and around the inner wall of the cylinder as a result of unloading of the thermal gradient, the thermally autofrettaged cylinder enhances the load carrying capacity as well as the fatigue life. Further enhancement in the fatigue life can be achieved by combining thermal autofrettage with shrink-fit. In this work, the fatigue life analysis of the thermally autofrettaged cylinder with shrink-fit is carried out. The analysis of thermal autofrettage is based on the assumptions of a generalized plane  strain condition and Tresca yield criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelsalam, O.R., Sedaghati, R.: Design optimization of compound cylinders subjected to autofrettage and shrink-fitting processes. ASME J. Press. Vessel Technol. 135, 021209-1–021209-11 (2013)

    Article  Google Scholar 

  2. ASME Boiler and Pressure Vessel Code: Rules for Construction of High Pressure Vessels, Section VIII, Division 3, Article KD-4, pp 74–76 (2007)

    Google Scholar 

  3. Barsom, J.M., Rolfe, S.T.: Fracture and Fatigue Control in Structures—Applications of Fracture Mechanics. Prentice-Hall, Inc., Englwood Cliffs (1987)

    Google Scholar 

  4. Bhatnagar, R.M.: Modelling, validation and design of autofrettage and compound cylinder. Eur. J. Mech. A/Solids 39, 17–25 (2013)

    Article  Google Scholar 

  5. Davidson, T.E., Barton, C.S., Reiner, A.N., Kendall, D.P.: New approach to the autofrettage of high-strength cylinders. Exp. Mech. 2, 33–40 (1962)

    Article  Google Scholar 

  6. Gexia, Y., Hongzhao, L.: An analytical solution of residual stresses for shrink-fit two-layer cylinders after autofrettage based on actual material behavior. ASME J. Press. Vessel Technol. 134(6), 061209-1–061209-8 (2012)

    Google Scholar 

  7. Jacob, L.: La Résistance et L’équilibre Elastique des Tubes Frettés. Mémoire de L’artillerie Navale 1(5), 43–155 (1907). (in French)

    MATH  Google Scholar 

  8. Jahed, H., Farshi, B., Karimi, M.: Optimum autofrettage and shrink-fit combination in multi-layer cylinders. ASME J. Press. Vessel Technol. 128(2), 196–200 (2006)

    Article  Google Scholar 

  9. Kamal, S.M.: A theoretical and experimental study of thermal autofrettage process. Ph.D. Thesis, IIT Guwahati, Guwahati, India (2016)

    Google Scholar 

  10. Kamal, S.M., Dixit, U.S.: Feasibility study of thermal autofrettage of thick-walled cylinders. ASME J. Press. Vessel Technol. 137(6), 061207-1–061207-18 (2015)

    Google Scholar 

  11. Kamal, S.M., Dixit, U.S.: A comparative study of thermal and hydraulic autofrettage. J. Mech. Sci. Technol. 30(6), 2483–2496 (2016)

    Article  Google Scholar 

  12. Kamal, S.M., Dixit, U.S.: A study on enhancing the performance of thermally autofrettaged cylinder through shrink-fitting. ASME J. Manuf. Sci. Eng. 138(9), 094501-1–094501-5 (2016b)

    Google Scholar 

  13. Kapp, J.A., Brown, B., LaBombard, E.J., Lorenz, H.A.: On the design of high durability high pressure vessels. Proc. ASME PVP Conf. 371, 85–91 (1998)

    Google Scholar 

  14. Rees, D.W.A.: The fatigue life of thick-walled autofrettaged cylinders with closed ends. Fatigue Fract. Eng. Mater. Struct. 14(1), 51−68 (1991)

    Google Scholar 

  15. Mote, J.D., Ching, L.K.W., Knight, R.E., Fay, R.J., Kaplan, M.A.: Explosive Autofrettage of Cannon Barrels, AMMRC CR 70-25, p. 02172. Army Materials and Mechanics Research Center, Watertown (1971)

    Google Scholar 

  16. Paris, P.C., Gomez, M.P., Anderson, W.E.: A rational analytic theory of fatigue. Trend Eng. 13, 9–14 (1961)

    Google Scholar 

  17. Parker, A.P., Kendall, D.P.: Residual stresses and lifetimes of tubes subjected to shrink-fit prior to autofrettage. ASME J. Press. Vessel Technol. 125(3), 282–286 (2003)

    Article  Google Scholar 

  18. Perl, M., Aroné, R.: Stress intensity factors for a radial multi-jacketed partially autofrettaged pressurized thick-walled cylinder. ASME J. Press. Vessel Technol. 110(1988), 147–154 (1988)

    Article  Google Scholar 

  19. Rogan, J.: Fatigue strength and mode of fracture of high pressure tubing made from low-alloy high strength steels. In: High Pressure Engineering, I. Mech E., London, UK, pp. 287 − 295 (1975)

    Google Scholar 

  20. Sanford, R.J.: Principles of Fracture Mechanics. Prentice hall, Upper Saddle River (2003)

    Google Scholar 

  21. Shufen, R., Dixit, U.S.: A finite element method study of combined hydraulic and thermal autofrettage process. ASME J. Press. Vessel Technol. 139(4), 041204-1–041204-9 (2017)

    Article  Google Scholar 

  22. Srinath, L.S.: Advanced Mechanics of Solids. Tata McGraw-Hill, New Delhi (2003)

    Google Scholar 

  23. Stacey, A., Webster, G.A.: Determination of residual stress distributions in autofrettaged tubing. Int. J. Press. Vessel Piping 31, 205–220 (1988)

    Article  Google Scholar 

  24. Underwood, J.H.: Stress Intensity Factors for Internally Pressurized Thick-Walled Cylinders. ASTM STP 513, Part 1, pp 59–70 (1972)

    Google Scholar 

  25. Zare, H.R., Darijani, H.: A novel autofrettage method for strengthening and design of thick-walled cylinders. Mater. Des. 105, 366–374 (2016)

    Article  Google Scholar 

  26. Zare, H.R., Darijani, H.: Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage. Int. J. Mech. Sci. 124–125, 1–8 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Kamal .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Residual Stress Distributions During Thermal Autofrettage of a Thick-Walled Cylinder

A thick-walled cylinder with inner radius a and outer radius b is considered. The cylinder is subjected to a temperature difference (T b  − T a ) for achieving thermal autofrettage. As (T b  − T a ) crosses the temperature difference required for initial yielding, the cylinder undergoes the first stage of elastic–plastic deformation causing the material at the inner wall to deform plastically. If (T b  − T a ) is increased further, at certain temperature difference, the second stage of elastic–plastic deformation occurs in the cylinder causing the simultaneous plastic deformation both at the inner and outer wall. The two stages of deformations in the cylinder with different elastic and plastic zones developed as per Tresca yield criterion are shown in Fig. 1.1. After the release of temperature difference, (T b  − T a ), residual stresses are generated in the cylinder. Referring to Fig. 1.1a, the residual stresses generated in different zones during the first stage of elastic–plastic deformation under the condition of generalized plane strain are given as follows [10] (Fig. 1.7):

Fig. 1.7
figure 7

Different elastic and plastic zones in the cylinder during a the first stage and b second stage of elastic–plastic deformation in thermal autofrettage. With permission from Kamal and Dixit [10]. Copyright 2015, ASME

Plastic zone I, a ≤ r ≤ c:

$$\sigma_{r}^{\text{I}} = k_{1} \sigma_{Y} \ln r + C_{3} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right\},$$
(1.14)
$$\sigma_{\theta }^{\text{I}} = k_{1} \sigma_{Y} \left( {1 + \ln r} \right) + C_{3} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {1 + \ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right\},$$
(1.15)
$$\sigma_{z}^{\text{I}} = k_{1} \sigma_{Y} \left( {1 + \ln r} \right) + C_{3} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {1 + 2\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\frac{{2b^{2} }}{{b^{2} - a^{2} }}} \right\}.$$
(1.16)

Plastic zone II, c ≤ r ≤ d:

$$\begin{aligned} \sigma_{r}^{\text{II}} & = C_{5} r^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} + C_{6} r^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} + \frac{{k_{1} \sigma_{Y} }}{{\left( {2\nu - 1} \right)}}\, + \frac{{E\alpha T_{a} }}{{\left( {2\nu - 1} \right)}} \\ & \quad + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\ln \left( {\frac{r}{a}} \right) - \frac{2\nu + 1}{2\nu - 1}} \right\} \\ & \quad - \frac{{E\varepsilon_{0} }}{{\left( {2\nu - 1} \right)}} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}} \\ & \quad \left\{ {\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right\}, \\ \end{aligned}$$
(1.17)
$$\begin{aligned} \sigma _{\theta }^{{\text{II}}} & = C_{5} \sqrt {2\left( {1 - \nu } \right)} r^{{\sqrt {2\left( {1 - \nu } \right)} - 1}} - C_{6} \sqrt {2\left( {1 - \nu } \right)} r^{{ - \sqrt {2\left( {1 - \nu } \right)} - 1}} + \frac{{k_{1} \sigma _{Y} }}{{\left( {2\nu - 1} \right)}} + \frac{{E\alpha T_{a} }}{{\left( {2\nu - 1} \right)}} \\ & \quad + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\ln \left( {\frac{r}{a}} \right) - \frac{2}{{2\nu - 1}}} \right\} - \frac{{E\varepsilon _{0} }}{{\left( {2\nu - 1} \right)}} \\ & \quad + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {1 + \ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right\}, \\ \end{aligned}$$
(1.18)
$$\begin{aligned} \sigma_{z}^{\text{II}} & = C_{5} r^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} + C_{6} r^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} + \left( {\frac{2\nu }{2\nu - 1}} \right)k_{1} \sigma_{Y} + \frac{{E\alpha T_{a} }}{{\left( {2\nu - 1} \right)}} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}} \\ & \quad \left\{ {\ln \left( {\frac{r}{a}} \right) - \frac{2\nu + 1}{2\nu - 1}} \right\} - \frac{{E\varepsilon_{0} }}{{\left( {2\nu - 1} \right)}} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}} \\ & \quad \left\{ {1 + 2\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\frac{{2b^{2} }}{{b^{2} - a^{2} }}} \right\}. \\ \end{aligned}$$
(1.19)

Elastic zone, d ≤ r ≤ b:

$$\begin{aligned} \sigma_{r}^{\text{el}} & = \frac{E\alpha }{{2\left( {1 - \nu } \right)}}\frac{{\left( {T_{b} - T_{a} } \right)}}{{\ln \left( {\frac{b}{a}} \right)}}\left[ {\ln \left( {\frac{b}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right. \\ & \quad \left. { - \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}\left\{ {\ln \left( {\frac{b}{a}} \right)\left( {2\nu - 1} \right) - \nu - \ln \left( {\frac{d}{a}} \right)} \right\}\left( {1 - \frac{{b^{2} }}{{r^{2} }}} \right)} \right] \\ & \quad + \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}k_{1} \sigma_{Y} \left( {1 - \frac{{b^{2} }}{{r^{2} }}} \right) + \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}E\alpha T_{a} \\ & \quad - \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}E\varepsilon_{0} \left( {1 - \frac{{b^{2} }}{{r^{2} }}} \right), \\ \end{aligned}$$
(1.20)
$$\begin{aligned} \sigma_{\theta }^{\text{el}} & = \frac{E\alpha }{{2\left( {1 - \nu } \right)}}\frac{{\left( {T_{b} - T_{a} } \right)}}{{\ln \left( {\frac{b}{a}} \right)}}\left[ {\ln \left( {\frac{b}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right. \\ & \quad \left. { - \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}\left\{ {\ln \left( {\frac{b}{a}} \right)\left( {2\nu - 1} \right) - \nu - \ln \left( {\frac{d}{a}} \right)} \right\}\left( {1 + \frac{{b^{2} }}{{r^{2} }}} \right)} \right] \\ & \quad + \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}k_{1} \sigma_{Y} \left( {1 + \frac{{b^{2} }}{{r^{2} }}} \right) + \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}E\alpha T_{a} \left( {1 + \frac{{b^{2} }}{{r^{2} }}} \right) \\ & \quad - \left\{ {\frac{{d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}E\varepsilon_{0} \left( {1 + \frac{{b^{2} }}{{r^{2} }}} \right), \\ \end{aligned}$$
(1.21)
$$\begin{aligned} \sigma _{z}^{{{\text{el}}}}& = \frac{{E\alpha }}{{2\left( {1 - \nu } \right)}}\frac{{\left( {T_{b} - T_{a} } \right)}}{{\ln \left( {\frac{b}{a}} \right)}}\left[ {1 + 2\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\frac{{2b^{2} }}{{b^{2} - a^{2} }} + 2\nu \ln \left( {\frac{b}{r}} \right)} \right. \\ & \quad \left. { - \nu - \left\{ {\frac{{2\nu d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}\left\{ {\ln \left( {\frac{b}{a}} \right)\left( {2\nu - 1} \right) - \nu - \ln \left( {\frac{d}{a}} \right)} \right\}} \right] \\ & \quad + \left\{ {\frac{{2\nu d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}k_{1} \sigma _{Y} + \left\{ {\frac{{d^{2} - b^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}E\alpha T_{a} \\ & \quad - \left\{ {\frac{{d^{2} - b^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}E\varepsilon _{0} - E\alpha \left( {T_{b} - T_{a} } \right)\frac{{\ln \left( {\frac{r}{a}} \right)}}{{\ln \left( {\frac{b}{a}} \right)}}. \\ \end{aligned}$$
(1.22)

In the above equations, a is the inner radius, b is the outer radius, c is the interface radius between the plastic zone I and II and d is the interface radius between the plastic zone II and the elastic zone. The radii, c and d are obtained by using the boundary conditions of vanishing radial stress at the inner radius and \(\sigma_{\theta }^{{^{{\left( {{\text{plastic}}\,{\text{zone}}\,{\text{II}}} \right)}} }} = \sigma_{z}^{{^{{\left( {{\text{plastic}}\,{\text{zone}}\,{\text{II}}} \right)}} }}\) at r = c as described in Kamal and Dixit [10].

The constants C3, C5 and C6 are given by

$$C_{5} = Q + \frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}d^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} \left\{ {\frac{{1 - \nu + \nu \sqrt {2\left( {1 - \nu } \right)} }}{{2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}E\varepsilon_{0} ,$$
(1.23)
$$C_{6} = P - \frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}E\varepsilon_{0} ,$$
(1.24)

where

$$\begin{aligned} P & = \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad \left\{ {\ln \left( {\frac{d}{a}} \right) - \frac{2\nu + 1}{2\nu - 1} - \frac{{\left( {1 + \nu } \right)}}{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}\, \\ & \quad - \frac{E\alpha }{{2\left( {1 - \nu } \right)}}\frac{{\left( {T_{b} - T_{a} } \right)}}{{\ln \left( {\frac{b}{a}} \right)}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad \left[ {\ln \left( {\frac{b}{d}} \right) + \left\{ {\frac{{b^{2} - d^{2} }}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}\left\{ {\ln \left( {\frac{b}{a}} \right)\left( {2\nu - 1} \right) - \nu - \ln \left( {\frac{d}{a}} \right)} \right\}} \right] \\ & \quad + \frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}k_{1} \sigma_{Y} \\ & \quad + \frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}E\alpha T_{a} , \\ \end{aligned}$$
(1.25)

and

$$\begin{aligned} Q & = - Pd^{{ - 2\sqrt {2\left( {1 - \nu } \right)} }} \left\{ {\frac{{1 - \nu + \nu \sqrt {2\left( {1 - \nu } \right)} }}{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} - \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}} \\ & \quad \frac{{\left( {1 + \nu } \right)}}{{d^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} \left\{ {1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} } \right\}}}. \\ \end{aligned}$$
(1.26)
$$C_{3} = R + \left[ \begin{aligned} \frac{{2\nu b^{2} c^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}d^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} \left\{ {\frac{{1 - \nu + \nu \sqrt {2\left( {1 - \nu } \right)} }}{{2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \hfill \\ - \frac{{2\nu b^{2} c^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} - \frac{1}{{\left( {2\nu - 1} \right)}} \hfill \\ \end{aligned} \right]E\varepsilon_{0} ,$$
(1.27)

where

$$\begin{aligned} R & = Qc^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} - k_{1} \sigma_{Y} \ln c + Pc^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} + \frac{{k_{1} \sigma_{Y} }}{{\left( {2\nu - 1} \right)}} + \frac{{E\alpha T_{a} }}{{\left( {2\nu - 1} \right)}} \\ & \quad + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\ln \left( {\frac{c}{a}} \right) - \frac{{2E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)^{2} \ln \left( {\frac{b}{a}} \right)}} - \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}, \\ \end{aligned}$$
(1.28)

The constant axial strain ε0 is given by

$$\begin{aligned} \varepsilon_{0} & = \frac{{k_{1} \sigma_{Y} }}{AE}\left\{ {\ln c\frac{{c^{2} }}{2} - \ln a\frac{{a^{2} }}{2} + \frac{1}{4}\left( {c^{2} - a^{2} } \right) + \frac{{\nu \left( {d^{2} - c^{2} } \right)}}{2\nu - 1} + \frac{{\nu d^{2} \left( {b^{2} - d^{2} } \right)}}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\} \\ & \quad + \frac{R}{AE}\left( {\frac{{c^{2} - a^{2} }}{2}} \right) + \frac{Q}{AE}\left\{ {\frac{{d^{{1 + \sqrt {2\left( {1 - \nu } \right)} }} - c^{{1 + \sqrt {2\left( {1 - \nu } \right)} }} }}{{1 + \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad + \frac{P}{AE}\left\{ {\frac{{d^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} - c^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} }}{{1 - \sqrt {2\left( {1 - \nu } \right)} }}} \right\} + \frac{{\alpha T_{a} }}{A}\left[ {\frac{{d^{2} - c^{2} }}{{2\left( {2\nu - 1} \right)}} - \frac{{\left( {b^{2} - d^{2} } \right)^{2} }}{{2\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}}} \right] \\ & \quad + \frac{{\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)A}}\left\{ {\ln \left( {\frac{d}{a}} \right)\frac{{d^{2} }}{2} - \ln \left( {\frac{c}{a}} \right)\frac{{c^{2} }}{2} - \frac{1}{2}\left( {d^{2} - c^{2} } \right)\frac{6\nu + 1}{{2\left( {2\nu - 1} \right)}}} \right\} \\ & \quad + \frac{\alpha }{{2\left( {1 - \nu } \right)}}\frac{{\left( {T_{b} - T_{a} } \right)}}{{\ln \left( {\frac{b}{a}} \right)A}}\left[ \begin{aligned} &- \nu d^{2} \ln \left( {\frac{b}{d}} \right) - \left\{ {\frac{{\nu d^{2} \left( {b^{2} - d^{2} } \right)}}{{b^{2} + d^{2} \left( {2\nu - 1} \right)}}} \right\}\left\{ {\ln \left( {\frac{b}{a}} \right)\left( {2\nu - 1} \right) - \nu - \ln \left( {\frac{d}{a}} \right)} \right\} \hfill \\ &- 2\left( {1 - \nu } \right)\left\{ {\ln \left( {\frac{b}{a}} \right)\frac{{b^{2} }}{2} - \ln \left( {\frac{d}{a}} \right)\frac{{d^{2} }}{2} - \frac{1}{4}\left( {b^{2} - d^{2} } \right)} \right\} \hfill \\ \end{aligned} \right], \\ \end{aligned}$$
(1.29)

where A is defined as

$$\begin{aligned} A & = \frac{{d^{2} - c^{2} }}{{2\left( {2\nu - 1} \right)}} - \frac{{\left( {b^{2} - d^{2} } \right)^{2} }}{{2\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}} - \left( {\frac{{c^{2} - a^{2} }}{2}} \right) \\ & \quad \left\{ {\frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right. \\ & \quad \left. {\left( \begin{aligned} \left( {\frac{c}{d}} \right)^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} \left( {1 - \nu + \nu \sqrt {2\left( {1 - \nu } \right)} } \right) \hfill \\ - \left( {\frac{c}{d}} \right)^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} \left( {1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} } \right) \hfill \\ \end{aligned} \right) - \frac{1}{{\left( {2\nu - 1} \right)}}} \right\} \\ & \quad - \left\{ {\frac{{d^{{1 + \sqrt {2\left( {1 - \nu } \right)} }} - c^{{1 + \sqrt {2\left( {1 - \nu } \right)} }} }}{{1 + \sqrt {2\left( {1 - \nu } \right)} }}} \right\}\frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}} \\ & \quad d^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} \left\{ {\frac{{1 - \nu + \nu \sqrt {2\left( {1 - \nu } \right)} }}{{2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad + \left\{ {\frac{{d^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} - c^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} }}{{1 - \sqrt {2\left( {1 - \nu } \right)} }}} \right\}\frac{{2\nu b^{2} }}{{\left( {2\nu - 1} \right)\left\{ {b^{2} + d^{2} \left( {2\nu - 1} \right)} \right\}}} \\ & \quad \left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}. \\ \end{aligned}$$
(1.30)

During the second stage of elastic–plastic deformation, the residual stresses in the plastic zones I and II are given in Eqs. (1.1) and (1.2). The residual stresses in the elastic zone and two outer plastic zones as shown in Fig. 1.1b are given as follows [10]:

Elastic zone, d ≤ r ≤ e:

$$\begin{aligned} \sigma_{r}^{\text{el}} & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{1}{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}} \right. \\ & \quad \left. { + \frac{1}{2} - \frac{{e^{2} }}{{2r^{2} }} - \ln \left( {\frac{b}{a}} \right)\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right] \\ & \quad + \frac{{k_{1} \sigma_{Y} }}{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) + \frac{{e^{2} }}{{2r^{2} }}k_{1} \sigma_{Y} + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}}, \\ \end{aligned}$$
(1.31)
$$\begin{aligned} \sigma_{\theta }^{\text{el}} & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{1}{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}} \right. \\ & \quad \left. { + \frac{1}{2} + \frac{{e^{2} }}{{2r^{2} }} - \ln \left( {\frac{b}{a}} \right)\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right] \\ & \quad + \frac{{k_{1} \sigma_{Y} }}{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) - \frac{{e^{2} }}{{2r^{2} }}k_{1} \sigma_{Y} + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}}, \\ \end{aligned}$$
(1.32)
$$\begin{aligned} \sigma_{z}^{\text{el}} & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{2\nu }{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}} \right. \\ & \quad\left. { + 1 - \ln \left( {\frac{b}{a}} \right)\frac{{2b^{2} }}{{b^{2} - a^{2} }}} \right] + \frac{2\nu }{2\nu - 1}k_{1} \sigma_{Y} \left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}}. \\ \end{aligned}$$
(1.33)

Plastic zone III, f ≤ r ≤ b:

$$\sigma_{r}^{\text{III}} = - k_{1} \sigma_{Y} \ln r + C_{7} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right\},$$
(1.34)
$$\sigma_{\theta }^{\text{III}} = - k_{1} \sigma_{Y} \left( {1 + \ln r} \right) + C_{7} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {1 + \ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right\},$$
(1.35)
$$\sigma_{z}^{\text{III}} = - k_{1} \sigma_{Y} \left( {1 + \ln r} \right) + C_{7} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {1 + 2\ln \left( {\frac{r}{a}} \right) - \ln \left( {\frac{b}{a}} \right)\frac{{2b^{2} }}{{b^{2} - a^{2} }}} \right\}.$$
(1.36)

Plastic zone IV, e ≤ r ≤ f:

$$\begin{aligned} \sigma_{r}^{\text{IV}} & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{1}{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}} \right. \\ & \quad \left. { + \ln \left( {\frac{r}{e}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right] \\ & \quad + k_{1} \sigma_{Y} \left\{ {\frac{1}{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) + \frac{1}{2} - \ln \left( {\frac{r}{e}} \right)} \right\} + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}}, \\ \end{aligned}$$
(1.37)
$$\begin{aligned} \sigma_{\theta }^{\text{IV}} & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{1}{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}} \right. \\ & \quad \left. { + 1 + \ln \left( {\frac{r}{e}} \right) - \ln \left( {\frac{b}{a}} \right)\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right)\frac{{b^{2} }}{{b^{2} - a^{2} }}} \right] \\ & \quad + \left\{ {\frac{1}{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) - \frac{1}{2} - \ln \left( {\frac{r}{e}} \right)} \right\}k_{1} \sigma_{Y} + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}}, \\ \end{aligned}$$
(1.38)
$$\begin{aligned} \sigma_{z}^{\text{IV}} & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{2\nu }{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}} \right. \\ & \quad\left. { + 2\nu \ln \left( {\frac{r}{e}} \right) + 1 - \ln \left( {\frac{b}{a}} \right)\frac{{2b^{2} }}{{b^{2} - a^{2} }}} \right] \\ & \quad + k_{1} \sigma_{Y} \left\{ {\frac{2\nu }{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) - 2\nu \ln \left( {\frac{r}{e}} \right)} \right\} + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}}. \\ \end{aligned}$$
(1.39)

In the above equations, e is the interface radius between the elastic zone and plastic zone III and f is the interface radius between the plastic zone III and plastic zone IV. In the second stage of elastic–plastic deformation, radii c, d, e and f are evaluated by using the boundary conditions of vanishing radial stress at the inner and outer radii, \(\sigma_{\theta }^{{^{{\left( {{\text{plastic}}\,{\text{zone}}\,{\text{II}}} \right)}} }} = \sigma_{z}^{{^{{\left( {{\text{plastic}}\,{\text{zone}}\,{\text{II}}} \right)}} }}\) at r = c and \(\sigma_{\theta }^{{^{{\left( {{\text{plastic}}\,{\text{zone}}\,{\text{IV}}} \right)}} }} = \sigma_{z}^{{^{{\left( {{\text{plastic}}\,{\text{zone}}\,{\text{IV}}} \right)}} }} ,\) at r = f [10]. The various constants involved in the residual stress equations of different zones in the second stage of elastic–plastic deformation are given by

$$\begin{aligned} C_{6} & = \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad \left\{ {\ln \left( {\frac{d}{a}} \right) - \frac{2\nu + 1}{2\nu - 1} - \frac{{\left( {1 + \nu } \right)}}{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}\, \\ & \quad - \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad \left[ {\frac{1}{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\} - \ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right] \\ & \quad - \left\{ {\frac{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}{{d^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} 2\nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\}\left( {\frac{2\nu }{2\nu - 1}} \right)k_{1} \sigma_{Y} \frac{{e^{2} }}{{2d^{2} }}, \\ \end{aligned}$$
(1.40)
$$C_{5} = - C_{6} d^{{ - 2\sqrt {2\left( {1 - \nu } \right)} }} \left\{ {\frac{{1 - \nu + \nu \sqrt {2\left( {1 - \nu } \right)} }}{{1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} }}} \right\} - \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\frac{{\left( {1 + \nu } \right)}}{{d^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} \left\{ {1 - \nu - \nu \sqrt {2\left( {1 - \nu } \right)} } \right\}}},$$
(1.41)
$$C_{3} = N + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}},$$
(1.42)

where

$$\begin{aligned} N & \quad = C_{5} c^{{ - 1 + \sqrt {2\left( {1 - \nu } \right)} }} + C_{6} c^{{ - 1 - \sqrt {2\left( {1 - \nu } \right)} }} + \frac{{k_{1} \sigma_{Y} }}{{\left( {2\nu - 1} \right)}} + \frac{{E\alpha T_{a} }}{{\left( {2\nu - 1} \right)}} \\ & \quad + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)}}\left\{ {\ln \left( {\frac{c}{a}} \right) - \frac{2\nu + 1}{2\nu - 1}} \right\} - k_{1} \sigma_{Y} \ln c. \\ \end{aligned}$$
(1.43)
$$C_{7} = M + \frac{{E\varepsilon_{0} }}{{\left( {1 - 2\nu } \right)}},$$
(1.44)

where

$$\begin{aligned} M & = \frac{E\alpha }{{\left( {2\nu - 1} \right)}}T_{a} + \frac{{E\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left[ {\frac{1}{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\} - \ln \left( {\frac{e}{a}} \right)} \right] \\ & \quad + \left\{ {\frac{1}{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right) + \frac{1}{2} - \ln \left( {\frac{f}{e}} \right) + \ln f} \right\}k_{1} \sigma_{Y} . \\ \end{aligned}$$
(1.45)
$$\,C_{9} = \, - \frac{{e^{2} \alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left( {\nu^{2} - 1} \right) - e^{2} \left( {1 - \nu^{2} } \right)\frac{{k_{1} \sigma_{Y} }}{E}.$$
(1.46)
$$\begin{aligned} C_{8} & = \frac{{f^{2} \alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)}}\left( {\nu^{2} - 1} \right) + \left( {1 - \nu^{2} } \right)\frac{{k_{1} \sigma_{Y} }}{E}f^{2} + C_{9} \\ & \quad - \frac{1 - 2\nu }{E}\left[ {\frac{{f^{2} }}{2}\left( {C_{7} - k_{1} \sigma_{Y} \ln f} \right)} \right] - \frac{3 - 2\nu }{4E}f^{2} k_{1} \sigma_{Y} \\ & \quad - \frac{1}{2}f^{2} \alpha T_{a} - \frac{{\alpha \left( {T_{b} - T_{a} } \right)}}{{2\ln \left( {\frac{b}{a}} \right)}}f^{2} \left\{ {\ln \left( {\frac{f}{a}} \right) - \frac{3}{2}} \right\} + \frac{{f^{2} }}{2}\varepsilon_{0} , \\ \end{aligned}$$
(1.47)
$$\begin{aligned} \varepsilon_{0} & = \frac{{k_{1} \sigma_{Y} }}{BE}\left[ \begin{aligned} & \ln c\left( {\frac{{c^{2} }}{2}} \right) - \ln a\left( {\frac{{a^{2} }}{2}} \right) + \frac{1}{4}\left( {c^{2} - a^{2} } \right) + \frac{\nu }{2\nu - 1}\left( {d^{2} - c^{2} } \right) + \frac{\nu }{2\nu - 1}\left( {1 + \frac{{e^{2} }}{{2d^{2} }}} \right)\left( {f^{2} - d^{2} } \right) \\ & - \nu \left\{ {\ln \left( {\frac{f}{e}} \right)f^{2} - \frac{1}{2}\left( {f^{2} - e^{2} } \right)} \right\} - \frac{1}{4}\left( {b^{2} - f^{2} } \right) - \ln b\left( {\frac{{b^{2} }}{2}} \right) + \ln f\left( {\frac{{f^{2} }}{2}} \right) \\ \end{aligned} \right] \\ & \quad + \frac{N}{2BE}\left( {c^{2} - a^{2} } \right) + \frac{{C_{5} }}{BE}\left\{ {\frac{{d^{{1 + \sqrt {2\left( {1 - \nu } \right)} }} - c^{{1 + \sqrt {2\left( {1 - \nu } \right)} }} }}{{1 + \sqrt {2\left( {1 - \nu } \right)} }}} \right\} \\ & \quad + \frac{{C_{6} }}{BE}\left\{ {\frac{{d^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} - c^{{1 - \sqrt {2\left( {1 - \nu } \right)} }} }}{{1 - \sqrt {2\left( {1 - \nu } \right)} }}} \right\} + \frac{{\alpha T_{a} }}{{2\left( {2\nu - 1} \right)B}}\left( {f^{2} - c^{2} } \right) \\ & \quad + \frac{{\alpha \left( {T_{b} - T_{a} } \right)}}{{\left( {2\nu - 1} \right)\ln \left( {\frac{b}{a}} \right)B}}\left\{ {\ln \left( {\frac{d}{a}} \right)\frac{{d^{2} }}{2} - \ln \left( {\frac{c}{a}} \right)\frac{{c^{2} }}{2} - \frac{3}{4}\left( {d^{2} - c^{2} } \right) - \frac{{d^{2} - c^{2} }}{2\nu - 1}} \right\} \\ & \quad + \frac{M}{2BE}\left( {b^{2} - f^{2} } \right) + \frac{{\alpha \left( {T_{b} - T_{a} } \right)}}{{2\left( {1 - \nu } \right)\ln \left( {\frac{b}{a}} \right)B}} \\ & \quad \left[ \begin{aligned} \frac{\nu }{{\left( {2\nu - 1} \right)}}\left\{ {\ln \left( {\frac{d}{a}} \right) + \frac{1}{2} - \frac{{e^{2} }}{{2d^{2} }}} \right\}\left( {f^{2} - d^{2} } \right) - \left\{ {\ln \left( {\frac{e}{a}} \right)e^{2} - \ln \left( {\frac{d}{a}} \right)d^{2} - \frac{1}{2}\left( {e^{2} - d^{2} } \right)} \right\} \hfill \\ + \nu \left\{ {\ln \left( {\frac{f}{e}} \right)f^{2} - \frac{1}{2}\left( {f^{2} - e^{2} } \right)} \right\} - \left\{ {\ln \left( {\frac{f}{a}} \right)f^{2} - \ln \left( {\frac{e}{a}} \right)e^{2} - \frac{1}{2}\left( {f^{2} - e^{2} } \right)} \right\} \hfill \\ \end{aligned} \right], \\ \end{aligned}$$
(1.48)

where

$$B = \left\{ {\frac{{b^{2} - a^{2} }}{{2\left( {2\nu - 1} \right)}}} \right\}.$$
(1.49)

Appendix B: Stress Analysis in the shrink-fitting of cylinders

An outer cylindrical layer of inner radius less than the outer radius b of the inner cylinder by δ, i.e. (b − δ) is considered, where δ is the shrink-fit allowance. The radius of the outer cylinder is z. A compound cylinder is formed by shrink-fitting the outer cylinder to the inner cylinder. The geometry of the compound cylinder is shown in Fig. 1.2. Due to shrink-fit, the contact pressure psh is generated between the two cylinders. The contact pressure psh acts as an external pressure on the inner thermally autofrettaged cylinder and as an internal pressure on the outer cylinder. The stresses in the inner and outer cylinders due to shrink-fit can be obtained as follows.

The radial stress σ r and hoop stress σ θ at any point in the wall cross section of a thick-walled cylinder are given by Lame’s equations as

$$\sigma_{r} = A + \frac{B}{{r^{2} }},$$
(1.50)
$$\sigma_{\theta } = A - \frac{B}{{r^{2} }},$$
(1.51)

where A and B are constants. Now, for the inner cylinder, the contact pressure psh due to shrink-fit acts as an external pressure. Hence, we get for the inner cylinder

$$\left. {\left( {\sigma_{r} } \right)} \right|_{r = a} = 0,$$
(1.52)
$$\left. {\left( {\sigma_{r} } \right)} \right|_{r = b} = p_{\text{sh}} .$$
(1.53)

Using Eq. (1.50) in Eqs. (1.52) and (1.53) and then solving, them one can obtain the constants A and B. Substituting A and B in Eqs. (1.50) and (1.51), the resulting stresses in the inner cylinder are obtained as

$$\sigma_{r}^{{{\text{sh}}_{i} }} = - p_{\text{sh}} \frac{{b^{2} }}{{b^{2} - a^{2} }}\left( {1 - \frac{{a^{2} }}{{r^{2} }}} \right),$$
(1.54)
$$\sigma_{\theta }^{{{\text{sh}}_{i} }} = - p_{\text{sh}} \frac{{b^{2} }}{{b^{2} - a^{2} }}\left( {1 + \frac{{a^{2} }}{{r^{2} }}} \right).$$
(1.55)

For the outer cylinder, psh acts as an internal pressure. Thus, for the outer cylinder

$$\left. {\left( {\sigma_{r} } \right)} \right|_{r = b} = - p_{\text{sh}} ,$$
(1.56)
$$\left. {\left( {\sigma_{r} } \right)} \right|_{r = z} = 0.$$
(1.57)

Using Eq. (1.50) in Eqs. (1.56) and (1.57), the constants A and B can be evaluated. The resulting stresses in the outer cylinder are obtained as

$$\sigma_{r}^{{{\text{sh}}_{o} }} = p_{\text{sh}} \frac{{b^{2} }}{{z^{2} - b^{2} }}\left( {1 - \frac{{z^{2} }}{{r^{2} }}} \right),$$
(1.58)
$$\sigma_{r}^{{{\text{sh}}_{o} }} = p_{\text{sh}} \frac{{b^{2} }}{{z^{2} - b^{2} }}\left( {1 + \frac{{z^{2} }}{{r^{2} }}} \right),$$
(1.59)

As the cylinder is open-ended, the axial stress component is zero for the inner as well as for the outer cylinder. The contact pressure psh can be evaluated as follows.

The radial displacement at any point in the wall of the cylinder can be obtained by using strain–displacement relation along with the generalized Hook’s law,

$$\varepsilon_{\theta } = \frac{u}{r} = \frac{1}{E}\left( {\sigma_{\theta } - \nu \sigma_{r} } \right).$$
(1.60)

Evaluating the value of σ r and σ θ at the inner wall of the outer cylinder, i.e. at r = b from Eqs. (1.58) and (1.59) and then substituting them in Eq. (60), the radial displacement u at the contact surface of the outer cylinder is obtained as

$$\left( {\left. u \right|_{r = b} } \right)_{{{\text{outer}}\,{\text{cylinder}}}} = \frac{{p_{\text{sh}} b}}{{E_{1} }}\left( {\frac{{z^{2} + b^{2} }}{{z^{2} - b^{2} }} + \nu_{1} } \right),$$
(1.61)

where E1 and ν1 are the Young’s modulus of elasticity and Poisson’s ratio of the outer cylinder. Similarly, the radial displacement at the contact surface of the inner cylinder can be obtained as

$$\left( {\left. u \right|_{r = b} } \right)_{{{\text{inner}}\,{\text{cylinder}}}} = - \frac{{p_{\text{sh}} b}}{{E_{2} }}\left( {\frac{{b^{2} + a^{2} }}{{b^{2} - a^{2} }} - \nu_{2} } \right),$$
(1.62)

where E2 and ν2 are the Young’s modulus of elasticity and Poisson’s ratio of the inner cylinder. The total interference δ at the contacting surface can be obtained as

$$\delta = \left( {\left. u \right|_{r = b} } \right)_{{{\text{outer}}\,{\text{cylinder}}}} - \left( {\left. u \right|_{r = b} } \right)_{{{\text{inner}}\,{\text{cylinder}}}} ,$$
$$\delta = p_{\text{sh}} b\left\{ {\frac{1}{{E_{1} }}\left( {\frac{{z^{2} + b^{2} }}{{z^{2} - b^{2} }} + \nu_{1} } \right) + \frac{1}{{E_{2} }}\left( {\frac{{b^{2} + a^{2} }}{{b^{2} - a^{2} }} - \nu_{2} } \right)} \right\}.$$
(1.63)

Equation (1.63) provides the value of the contact pressure psh as

$$p_{\text{sh}} = \frac{{\left( {\frac{\delta }{b}} \right)}}{{\left\{ {\frac{1}{{E_{1} }}\left( {\frac{{z^{2} + b^{2} }}{{z^{2} - b^{2} }} + \nu_{1} } \right) + \frac{1}{{E_{2} }}\left( {\frac{{b^{2} + a^{2} }}{{b^{2} - a^{2} }} - \nu_{2} } \right)} \right\}}}.$$
(1.64)

If both the inner and outer cylinder is made of the same material, then E1 = E2 = E and ν1 = ν2 = ν. Thus, Eq. (1.64) reduces to

$$p_{\text{sh}} = \frac{{\left( {\frac{\delta }{b}} \right)}}{{\frac{1}{E}\left\{ {\left( {\frac{{z^{2} + b^{2} }}{{z^{2} - b^{2} }}} \right) + \left( {\frac{{b^{2} + a^{2} }}{{b^{2} - a^{2} }}} \right)} \right\}}}.$$
(1.65)

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamal, S.M., Dixit, U.S. (2019). Enhancement of Fatigue Life of Thick-Walled Cylinders Through Thermal Autofrettage Combined with Shrink-Fit. In: Dixit, U., Narayanan, R. (eds) Strengthening and Joining by Plastic Deformation. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0378-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0378-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0377-7

  • Online ISBN: 978-981-13-0378-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics